6 research outputs found

    Spin Foam Models of Yang-Mills Theory Coupled to Gravity

    Full text link
    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barret-Crane ansatz. In the Euclidian gravity case we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidian gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity.Comment: 10 page

    Quantum Gravity Vacuum and Invariants of Embedded Spin Networks

    Get PDF
    We show that the path integral for the three-dimensional SU(2) BF theory with a Wilson loop or a spin network function inserted can be understood as the Rovelli-Smolin loop transform of a wavefunction in the Ashtekar connection representation, where the wavefunction satisfies the constraints of quantum general relativity with zero cosmological constant. This wavefunction is given as a product of the delta functions of the SU(2) field strength and therefore it can be naturally associated to a flat connection spacetime. The loop transform can be defined rigorously via the quantum SU(2) group, as a spin foam state sum model, so that one obtains invariants of spin networks embedded in a three-manifold. These invariants define a flat connection vacuum state in the q-deformed spin network basis. We then propose a modification of this construction in order to obtain a vacuum state corresponding to the flat metric spacetime.Comment: 15 pages, revised version to appear in Class. Quant. Gra

    Information in Black Hole Radiation

    Get PDF
    If black hole formation and evaporation can be described by an SS matrix, information would be expected to come out in black hole radiation. An estimate shows that it may come out initially so slowly, or else be so spread out, that it would never show up in an analysis perturbative in MPlanck/MM_{Planck}/M, or in 1/N for two-dimensional dilatonic black holes with a large number NN of minimally coupled scalar fields.Comment: 12 pages, 1 PostScript figure, LaTeX, Alberta-Thy-24-93 (In response to Phys. Rev. Lett. referees' comments, the connection between expansions in inverse mass and in 1/N are spelled out, and a figure is added. An argument against perturbatively predicting even late-time information is also provided, as well as various minor changes.
    corecore