6 research outputs found

    Design and Simulation of InGaN -Junction Solar Cell

    Get PDF
    The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In 0.622 Ga 0.378 N (Eg = 1.39 eV) solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm 2 , and 300 K), the following electrical parameters: sc = 32.6791 mA/cm 2 , oc = 0.94091 volts, FF = 86.2343%, and = 26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In 0.622 Ga 0.378 N solar cell efficiency was inversely proportional with the temperature

    Design and Simulation of InGaN p-n Junction Solar Cell

    Get PDF
    The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N (Eg = 1.39 eV) solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm2, and 300 K), the following electrical parameters: Jsc=32.6791 mA/cm2, Voc=0.94091 volts, FF = 86.2343%, and η=26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature
    corecore