544 research outputs found
A Brief Journey into the History of the Arterial Pulse
Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its characteristics have advanced from simple evaluation by touch to complex methodologies such as ultrasonography and plethysmography. Today's understanding of the various characteristics of the arterial pulse relies on our ancestors' observations and experiments. The pursuit of science continues to lead to major advancements in our knowledge of the arterial pulse and its application in diagnosis of atherosclerotic disease
Synchronization in Random Geometric Graphs
In this paper we study the synchronization properties of random geometric
graphs. We show that the onset of synchronization takes place roughly at the
same value of the order parameter that a random graph with the same size and
average connectivity. However, the dependence of the order parameter with the
coupling strength indicates that the fully synchronized state is more easily
attained in random graphs. We next focus on the complete synchronized state and
show that this state is less stable for random geometric graphs than for other
kinds of complex networks. Finally, a rewiring mechanism is proposed as a way
to improve the stability of the fully synchronized state as well as to lower
the value of the coupling strength at which it is achieved. Our work has
important implications for the synchronization of wireless networks, and should
provide valuable insights for the development and deployment of more efficient
and robust distributed synchronization protocols for these systems.Comment: 5 pages, 4 figure
Spectrum-sharing method for co-existence between 5G OFDM-based system and fixed service
This study investigates the co-existence of fifth generation (5G) mobile communication systems and fixed service (FS) in the 28-GHz band through the utilization and modification of an existing spectrum-sharing method known as the advanced minimum coupling loss (A-MCL) model. The proposed model is based on the power spectral density (PSD) overlap between the 5G orthogonal frequency-division multiplexing (OFDM)-based system and the FS. Spectrum-sharing studies typically need 5G parameters, such as the spectrum emission mask (SEM); however, no such information is available for the new system to achieve accurate results. The proposed model is suitable for spectrum-sharing studies between 5G and other wireless systems without the need for the 5G SEM. Moreover, the existing model is implemented in a new application (i.e., 5G) in the 28-GHz band with different 5G bandwidths. Furthermore, the FS parameters and its frequency allocation are selected based on the Canadian standards to obtain preliminary results for the co-existence between the 5G system and the FS. Results show that co-existence is feasible when certain distances are applied, especially with higher 5G bandwidths (such as 0.5 and 1 GHz) when the 5G system acts as an interferer. In addition, the antenna position plays a major role in reducing the required separation distances between the victim receiver and the interfering transmitter. This model can be used for any future mobile generation such as the sixth generation (6G) mobile system if its PSD is known. This study is concurrent with the worldwide spectrum-sharing studies requested by the International Telecommunication Union for WRC-19
Dynamics of Rumor Spreading in Complex Networks
We derive the mean-field equations characterizing the dynamics of a rumor
process that takes place on top of complex heterogeneous networks. These
equations are solved numerically by means of a stochastic approach. First, we
present analytical and Monte Carlo calculations for homogeneous networks and
compare the results with those obtained by the numerical method. Then, we study
the spreading process in detail for random scale-free networks. The time
profiles for several quantities are numerically computed, which allow us to
distinguish among different variants of rumor spreading algorithms. Our
conclusions are directed to possible applications in replicated database
maintenance, peer to peer communication networks and social spreading
phenomena.Comment: Final version to appear in PR
A Rare Coincidence of Two Coronary Anomalies in an Adult
Anomalous right-sided left main coronary arteries and dual type IV left anterior descending arteries are rare coronary anomalies. In this case report, we present a 59 year old man with atypical chest pain and a combination of the above coronary anomalies as identified by selective coronary angiography and computed tomography angiography. To the best of our knowledge, the coincidence of these coronary anomalies has not been previously described
Adjustable compliance and biarticularity could improve hopping efficiency and robustness
The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P7
Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine
The current paper investigates the effects of various elements including turbulence, wind shear, yawed inflow, tower shadow, gravity, mass and aerodynamic imbalances on variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine. It will identify the individual and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine
CO2 laser micromachining of nanocrystalline diamond films grown on doped silicon substrates
We demonstrate that nanocrystalline diamond films grown on highly doped silicon substrates can be patterned using a CO2 laser operating at a wavelength of 10.6 μm, where both low doped silicon and diamond exhibit negligible optical absorption. The patterning is initiated by free carrier absorption in the silicon substrate and further enhanced by the thermal runaway effect, which results in surface heating in the silicon substrate and subsequent thermal ablation of the diamond film in an oxygen rich atmosphere. Using this approach, micron-scale grating and dot patterns are patterned in thin film diamond. The localized heating is simulated and analyzed using concurrent optical and thermal finite element modelling. The laser patterning method described here offers a cost effective and rapid solution for micro-structuring diamond films
- …