295 research outputs found
Genome sequence of Acetomicrobium hydrogeniformans OS1
Acetomicrobium hydrogeniformans, an obligate anaerobe of the phylum Synergistetes, was isolated from oil production water. It has the unusual ability to produce almost 4 molecules H2/molecule glucose. The draft genome of A. hydrogeniformans OS1 (DSM 22491T) is 2,123,925 bp, with 2,068 coding sequences and 60 RNA genes
DNA-Linker-Induced Surface Assembly of Ultra Dense Parallel Single Walled Carbon Nanotube Arrays
Ultrathin film preparations of single-walled carbon nanotube (SWNT) allow economical utilization of nanotube properties in electronics applications. Recent advances have enabled production of micrometer scale SWNT transistors and sensors but scaling these devices down to the nanoscale, and improving the coupling of SWNTs to other nanoscale components, may require techniques that can generate a greater degree of nanoscale geometric order than has thus far been achieved. Here, we introduce linker-induced surface assembly, a new technique that uses small structured DNA linkers to assemble solution dispersed nanotubes into parallel arrays on charged surfaces. Parts of our linkers act as spacers to precisely control the internanotube separation distance down to <3 nm and can serve as scaffolds to position components such as proteins between adjacent parallel nanotubes. The resulting arrays can then be stamped onto other substrates. Our results demonstrate a new paradigm for the self-assembly of anisotropic colloidal nanomaterials into ordered structures and provide a potentially simple, low cost, and scalable route for preparation of exquisitely structured parallel SWNT films with applications in high-performance nanoscale switches, sensors, and meta-materials
Optically triggered Q-switched photonic crystal laser
An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization and wavelength. The creation of the Q-switched laser demonstrates the benefits of customizing photonic crystal cavities to maximally synergize with an infiltrated material and illustrates the potential of integrating semiconductor nanophotonics with optical materials
Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates
A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami—a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates (~75 nm × 95 nm) that display two lines of single-stranded DNA ‘hooks’ in a cross pattern with ~6 nm resolution. The perpendicular lines of hooks serve as sequence-specific binding sites for two types of nanotubes, each functionalized non-covalently with a distinct DNA linker molecule. The hook-binding domain of each linker is protected to ensure efficient hybridization. When origami templates and DNA-functionalized nanotubes are mixed, strand displacement-mediated deprotection and binding aligns the nanotubes into cross-junctions. Of several cross-junctions synthesized by this method, one demonstrated stable field-effect transistor-like behaviour. In such organizations of electronic components, DNA origami serves as a programmable nanobreadboard; thus, DNA origami may allow the rapid prototyping of complex nanotube-based structures
Valley-spin blockade and spin resonance in carbon nanotubes
Manipulation and readout of spin qubits in quantum dots made in III-V
materials successfully rely on Pauli blockade that forbids transitions between
spin-triplet and spin-singlet states. Quantum dots in group IV materials have
the advantage of avoiding decoherence from the hyperfine interaction by
purifying them with only zero-spin nuclei. Complications of group IV materials
arise from the valley degeneracies in the electronic bandstructure. These lead
to complicated multiplet states even for two-electron quantum dots thereby
significantly weakening the selection rules for Pauli blockade. Only recently
have spin qubits been realized in silicon devices where the valley degeneracy
is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade
can be observed by lifting valley degeneracy through disorder. In clean
nanotubes, quantum dots have to be made ultra-small to obtain a large energy
difference between the relevant multiplet states. Here we report on
low-disorder nanotubes and demonstrate Pauli blockade based on both valley and
spin selection rules. We exploit the bandgap of the nanotube to obtain a large
level spacing and thereby a robust blockade. Single-electron spin resonance is
detected using the blockade.Comment: 31 pages including supplementary informatio
Fast Ion Conduction of Sintered Glass-Ceramic Lithium Ion Conductors Investigated by Impedance Spectroscopy and Coaxial Reflection Technique
As the ionic conductivity of solid-state lithium ion conductors rises, knowledge of the detailed conductivity mechanisms is harder to obtain due to the limited frequency resolution of the traditional impedance spectrometers. Moreover, the data is easily affected by the local microstructure (i.e. pores, grain-boundaries) and the preparation conditions. The aim of this work is to demonstrate the feasibility of the coaxial reflection technique as a reliable tool to study fast ionic conductors (i.e. σ > 10⁻⁴ S cm⁻¹). Especially the relative permittivity can be determined more accurately at room temperature. For the first time the electrical performance of LATP and LLZO manufactured via a scalable top-down glass-ceramic route is evaluated. The density turns out to be a key parameter influencing both relative permittivity and resulting conductivities. For a 100% dense LATP sample the coaxial reflection technique reveals a high grain-core conductivity of 6 × 10⁻³ S cm⁻¹ similar to the conductivity of ideal single crystals
An addressable quantum dot qubit with fault-tolerant control fidelity
Exciting progress towards spin-based quantum computing has recently been made
with qubits realized using nitrogen-vacancy (N-V) centers in diamond and
phosphorus atoms in silicon, including the demonstration of long coherence
times made possible by the presence of spin-free isotopes of carbon and
silicon. However, despite promising single-atom nanotechnologies, there remain
substantial challenges in coupling such qubits and addressing them
individually. Conversely, lithographically defined quantum dots have an
exchange coupling that can be precisely engineered, but strong coupling to
noise has severely limited their dephasing times and control fidelities. Here
we combine the best aspects of both spin qubit schemes and demonstrate a
gate-addressable quantum dot qubit in isotopically engineered silicon with a
control fidelity of 99.6%, obtained via Clifford based randomized benchmarking
and consistent with that required for fault-tolerant quantum computing. This
qubit has orders of magnitude improved coherence times compared with other
quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning
of the electron g*-factor, we can Stark shift the electron spin resonance (ESR)
frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct
path to large-scale arrays of addressable high-fidelity qubits that are
compatible with existing manufacturing technologies
Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor
We report the dispersive readout of the spin state of a double quantum dot
formed at the corner states of a silicon nanowire field-effect transistor. Two
face-to-face top-gate electrodes allow us to independently tune the charge
occupation of the quantum dot system down to the few-electron limit. We measure
the charge stability of the double quantum dot in DC transport as well as
dispersively via in-situ gate-based radio frequency reflectometry, where one
top-gate electrode is connected to a resonator. The latter removes the need for
external charge sensors in quantum computing architectures and provides a
compact way to readout the dispersive shift caused by changes in the quantum
capacitance during interdot charge transitions. Here, we observe Pauli
spin-blockade in the high-frequency response of the circuit at finite magnetic
fields between singlet and triplet states. The blockade is lifted at higher
magnetic fields when intra-dot triplet states become the ground state
configuration. A lineshape analysis of the dispersive phase shift reveals
furthermore an intradot valley-orbit splitting of 145 eV.
Our results open up the possibility to operate compact CMOS technology as a
singlet-triplet qubit and make split-gate silicon nanowire architectures an
ideal candidate for the study of spin dynamics
Who goes there? Social surveillance as a response to intergroup conflict in a primitive termite
This is the final version. Available on open access from the Royal Society via the DOI in this recordIntergroup conflict has been suggested as a major force shaping the evolution of social
behaviour in animal groups. A long-standing hypothesis is that groups at risk of attack
by rivals should become more socially cohesive, to increase resilience or protect
against future attack. However, it is usually unclear how cohesive behaviours (such as
grooming or social contacts) function in intergroup conflict. We performed an
experiment in which we exposed young colonies of the dampwood termite,
Zootermopsis angusticollis, to a rival colony while preventing physical combat with a
permeable barrier. We measured social contacts, allogrooming, and trophallaxis
before, during, and after exposure. Termites showed elevated rates of social contacts
during exposure to a rival compared to the pre-exposure phase, but rates returned to
pre-exposure levels after colonies were separated for nine days. There was evidence
of a delayed effect of conflict on worker trophallaxis. We suggest that social contacts
during intergroup conflict function as a form of social surveillance, to check individual
identity and assess colony resource holding potential. Intergroup conflict may increase
social cohesion in both the short and the long term, improving the effectiveness of
groups in competition.Natural Environment Research Council (NERC
- …