207 research outputs found

    Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects

    Get PDF
    Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naive human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrp(rd6)/Mfrp(rd6) mice--an established preclinical model of RP--and long-term improvement in visual function was observed in AAV-Mfrp-treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines, and the Mfrp(rd6)/Mfrp(rd6) preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials

    Comparative evaluation of diode laser versus argon laser photocoagulation in patients with central serous retinopathy: A pilot, randomized controlled trial [ISRCTN84128484]

    Get PDF
    BACKGROUND: To evaluate the efficacy of diode laser photocoagulation in patients with central serous retinopathy (CSR) and to compare it with the effects of argon green laser. METHODS: Thirty patients with type 1 unilateral CSR were enrolled and evaluated on parameters like best corrected visual acuity (BCVA), direct and indirect ophthalmoscopy, amsler grid for recording scotoma and metamorphopsia, contrast sensitivity using Cambridge low contrast gratings and fluorescein angiography to determine the site of leakage. Patients were randomly assigned into 2 groups according to the statistical random table using sequence generation. In Group 1 (n = 15), diode laser (810 nm) photocoagulation was performed at the site of leakage while in Group 2 (n = 15), eyes were treated with argon green laser (514 nm) using the same laser parameters. Patients were followed up at 4, 8 and 12 weeks after laser. RESULTS: The mean BCVA in group 1 improved from a pre-laser decimal value of 0.29 ± 0.14 to 0.84 ± 0.23 at 4 weeks and 1.06 ± 0.09 at 12 weeks following laser. In group 2, the same improved from 0.32 ± 0.16 to 0.67 ± 0.18 at 4 weeks and 0.98 ± 0.14 at 12 weeks following laser. The improvement in BCVA was significantly better in group 1 (p < 0.0001) at 4 weeks. At 4 weeks following laser, all the patients in group1 were free of scotoma while 6 patients in group 2 had residual scotoma (p < 0.05). The mean contrast sensitivity in group 1 improved from pre-laser value of 98.4 ± 24.77 to 231.33 ± 48.97 at 4 weeks and 306.00 ± 46.57 at 12 weeks following laser. In group 2, the same improved from 130.66 ± 31.95 to 190.66 ± 23.44 at 4 weeks and 215.33 ± 23.25 at 12 weeks. On comparative evaluation, a significantly better (p < 0.001) improvement was noted in group 1. CONCLUSION: Diode laser may be a better alternative to argon green laser whenever laser treatment becomes indicated in patients with central serous retinopathy in terms of faster visual rehabilitation and better contrast sensitivity. In addition, diode laser also has the well-recognized ergonomic and economic advantages
    corecore