4,838 research outputs found

    Adatoms in graphene as a source of current polarization: Role of the local magnetic moment

    Full text link
    We theoretically investigate spin-resolved currents flowing in large-area graphene, with and without defects, doped with single atoms of noble metals (Cu, Ag and Au) and 3d-transition metals (Mn,Fe,Co and Ni). We show that the presence of a local magnetic moment is a necessary but not sufficient condition to have a non zero current polarization. An essential requirement is the presence of spin-split localized levels near the Fermi energy that strongly hybridize with the graphene pi-bands. We also show that a gate potential can be used to tune the energy of these localized levels, leading to an external way to control the degree of spin-polarized current without the application of a magnetic field.Comment: 7 pages, 6 figure

    Topological Phases in Triangular Lattices of Ru Adsorbed on Graphene: ab-initio calculations

    Full text link
    We have performed an ab initio investigation of the electronic properties of the graphene sheet adsorbed by Ru adatoms (Ru/graphene). For a particular set of triangular arrays of Ru adatoms, we find the formation of four (spin-polarized) Dirac cones attributed to a suitable overlap between two hexagonal lattices: one composed by the C sites of the graphene sheet, and the other formed by the surface potential induced by the Ru adatoms. Upon the presence of spin-orbit coupling (SOC) nontrivial band gaps take place at the Dirac cones promoting several topological phases. Depending on the Ru concentration, the system can be topologically characterized among the phases i) Quantum Spin Hall (QSH), ii) Quantum Anomalous Hall (QAH), iii) metal iv) or trivial insulator. For each concentration, the topological phase is characterized by the ab-initio calculation of the Chern number.Comment: 8 pages, 6 figure

    Mimicking Nanoribbon Behavior Using a Graphene Layer on SiC

    Full text link
    We propose a natural way to create quantum-confined regions in graphene in a system that allows large-scale device integration. We show, using first-principles calculations, that a single graphene layer on a trenched region of [0001ˉ][000\bar{1}] SiCSiC mimics i)the energy bands around the Fermi level and ii) the magnetic properties of free-standing graphene nanoribbons. Depending on the trench direction, either zigzag or armchair nanoribbons are mimicked. This behavior occurs because a single graphene layer over a SiCSiC surface loses the graphene-like properties, which are restored solely over the trenches, providing in this way a confined strip region.Comment: 4 pages, 4 figure
    corecore