2,945 research outputs found

    Nonmonotonic dx2y2d_{x^2-y^2} superconducting gap in electron-doped Pr0.89_{0.89}LaCe0.11_{0.11}CuO4_4: Evidence of coexisting antiferromagnetism and superconductivity?

    Full text link
    Recent experiments on Pr0.89_{0.89}LaCe0.11_{0.11}CuO4_4 observe an anisotropic spin-correlation gap and a nonmonotonic superconducting (SC) gap, which we analyze within the framework of a tttttivUt-t^{\prime}-t^{\prime\prime}-t^{\prime\prime\prime}-t^{iv}-U model with a dx2y2d_{x^2-y^2} pairing interaction including a third harmonic contribution. By introducing a realistic broadening of the quasiparticle spectrum to reflect small-angle scattering, our computations explain the experimental observations, especially the presence of a maximum in the leading edge gap in the vicinity of the hot-spots. Our analysis suggests that the material behaves like a {\it two-band} superconductor with the d-wave third harmonic acting as the {\it interband pairing gap}, and that the anti-ferromagnetic (AFM) and SC orders co-exist in a uniform phase

    Reconstructing the bulk Fermi surface and the superconducting gap properties from Neutron Scattering experiments

    Full text link
    We develop an analytical tool to extract bulk electronic properties of unconventional superconductors through inelastic neutron scattering (INS) spectra. Since the spin excitation spectrum in the superconducting (SC) state originates from Bogoliubov quasiparticle scattering associated with Fermi surface nesting, its energy-momentum relation--the so called `hour-glass' feature--can be inverted to reveal the Fermi momentum dispersion of the single-particle spectrum as well as the corresponding SC gap function. The inversion procedure is analogous to the quasiparticle interference (QPI) effect in scanning tunneling microscopy (STM). Whereas angle-resolved photoemission spectroscopy (ARPES) and STM provide surface sensitive information, our inversion procedure provides bulk electronic properties. The technique is essentially model independent and can be applied to a wide variety of materials.Comment: 8 pages, 4 figure

    Failure of t-J models in describing doping evolution of spectral weight in x-ray scattering, optical and photoemission spectra of the cuprates

    Full text link
    We have analyzed experimental evidence for an anomalous transfer of spectral weight from high to low energy scales in both electron and hole doped cuprates as a function of doping. X-ray scattering, optical and photoemission spectra are all found to show that the high energy spectral weight decreases with increasing doping at a rate much faster than predictions of the large UU-limit calculations. The observed doping evolution is however well-described by an intermediate coupling scenario where the effective Hubbard UU is comparable to the bandwidth. The experimental spectra across various spectroscopies are inconsistent with fixed-UU exact diagonalization or quantum Monte Carlo calculations, and suggest a significant doping dependence of the effective UU in the cuprates.Comment: Accepted for Phys. Rev. B (2010). 7 pages, 4 figure

    Paramagnon-induced dispersion anomalies in the cuprates

    Full text link
    We report the self-energy associated with RPA magnetic susceptibility in the hole-doped Bi_2Sr_2CuO_6 (Bi2201) and the electron-doped Nd_{2-x}Ce_xCuO_4 (NCCO) in the overdoped regime within the framework of a one-band Hubbard model. Strong weight is found in the magnetic spectrum around (pi, 0) at about 360 meV in Bi2201 and 640 meV in NCCO, which yields dispersion anomalies in accord with the recently observed `waterfall' effects in the cuprates.Comment: Submitted to PRL, Dec. 21, 2006; 4 eps figures, revte

    Visualizing electron pockets in cuprate superconductors

    Full text link
    Fingerprint of the electron-pocket in cuprates has been obtained only in numerous magneto-transport measurements, but its absence in spectroscopic observations pose a long-standing mystery. We develop a theoretical tool to provide ways to detect electron-pockets via numerous spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows additional 7 q{\bm q} vectors associated with the scattering on the electron-pocket, than that on the hole-pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket may lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprate compounds which dictates the direct fingerprints of electron pockets in these systems.Comment: 10 pages, 6 figures, submitte

    Gutzwiller Charge Phase Diagram of Cuprates, including Electron-Phonon Coupling Effects

    Full text link
    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T_c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(pi,pi) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave (CDW) order in YBa_2Cu_3O_{7-delta} including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.Comment: This is a revised version of arXiv:1207.5715. 25 pages, 5 figures, plus Supplement [7 pages, 7 figures], available as a pdf [click on other, then Download Source, & extract pdf file from zip] Manuscript is under consideration at the NJ

    Evolution of Mid-gap States and Residual 3-Dimensionality in La2x_{2-x}Srx_xCuO4_4

    Full text link
    We have carried out extensive first principles doping-dependent computations of angle-resolved photoemission (ARPES) intensities in La2x_{2-x}Srx_xCuO4_4 (LSCO) over a wide range of binding energies. Intercell hopping and the associated 3-dimensionality, which is usually neglected in discussing cuprate physics, is shown to play a key role in shaping the ARPES spectra. Despite the obvious importance of strong coupling effects (e.g. the presence of a lower Hubbard band coexisting with mid-gap states in the doped insulator), we show that a number of salient features of the experimental ARPES spectra are captured to a surprisingly large extent when effects of kzk_z-dispersion are properly included in the analysis.Comment: 5 pages, 4 figure
    corecore