1,299 research outputs found
A new 3D-beam finite element including non-uniform torsion with the secondary torsion moment deformation effect
In this paper, a new 3D Timoshenko linear-elastic beam finite element including warping torsion will be presented which is suitable for analysis of spatial structures consisting of constant open and hollow structural section (HSS) beams. The analogy between the 2ndorder beam theory (with axial tension) and torsion (including warping) was used for the formulation of the equations for non-uniform torsion. The secondary torsional moment deformation effect and the shear force effect are included into the local beam finite element stiffness matrix. The warping part of the first derivative of the twist angle was considered as an additional degree of freedom at the finite element nodes. This degree of freedom represents a part of the twist angle curvature caused by the bimoment. Results of the numerical experiments are discussed, compared and evaluated. The importance of the inclusion of warping in stress-deformation analyses of closed-section beams is demostrated
The vacuum induced Berry phase beyond rotating-wave approximation
With reference to the vacuum induced Berry phase (VIBP) obtained in the
interaction of a spin-1/2 particle with quantized irradiation field under
rotating-wave approximation (RWA), we present completely different treatment
for the VIBP by a fully quantum mechanical treatment beyond the RWA, which
gives a new definition of the VIBP and indicates the validity of RWA to be
relevant not only to the energy conservation and comparison of characteristic
parameters, but also to more subtle physics, such as the geometric property of
the state evolution. Our result is of conceptual importance and also of
significant relevance to quantum information processing
Non-Markovian effect on the quantum discord
We study the non-Markovian effect on the dynamics of the quantum discord by
exactly solving a model consisting of two independent qubits subject to two
zero-temperature non-Markovian reservoirs, respectively. Considering the two
qubits initially prepared in Bell-like or extended Werner-like states, we show
that there is no occurrence of the sudden death, but only instantaneous
disappearance of the quantum discord at some time points, in comparison to the
entanglement sudden death in the same range of the parameters of interest. It
implies that the quantum discord is more useful than the entanglement to
describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure
Electron-phonon interaction in n-doped cuprates: an Inelastic X-ray Scattering study
Inelastic x-ray scattering (IXS) with very high (meV) energy resolution has
become a valuable spectroscopic tool, complementing the well established
coherent inelastic neutron scattering (INS) technique for phonon dispersion
investigations. In the study of crystalline systems IXS is a viable alternative
to INS, especially in cases where only small samples are available. Using IXS,
we have measured the phonon dispersion of Nd_{1.86}Ce_{0.14}CuO_{4+\delta}
along the [x,0,0] and [x,x,0] in-plane directions. Compared to the undoped
parent compound, the two highest longitudinal optical (LO) phonon branches are
shifted to lower energies because of Coulomb-screening effects brought about by
the doped charge carriers. An additional anomalous softening of the highest
branch is observed around q=(0.2,0,0). This anomalous softening, akin to what
has been observed in other compounds, provides evidence for a strong
electron-phonon coupling in the electron-doped high-temperature
superconductors.Comment: Proceedings of the SATT11 conference, Vietri sul Mare - Italy (March
2002); accepted for publication on Int. J. Mod. Phys.
Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}
High-transition-temperature (high-Tc) superconductivity develops near
antiferromagnetic phases, and it is possible that magnetic excitations
contribute to the superconducting pairing mechanism. To assess the role of
antiferromagnetism, it is essential to understand the doping and temperature
dependence of the two-dimensional antiferromagnetic spin correlations. The
phase diagram is asymmetric with respect to electron and hole doping, and for
the comparatively less-studied electron-doped materials, the antiferromagnetic
phase extends much further with doping [1, 2] and appears to overlap with the
superconducting phase. The archetypical electron-doped compound
Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx
0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x
\approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering
measurements that point to the distinct possibility that genuine long-range
antiferromagnetism and superconductivity do not coexist. The data reveal a
magnetic quantum critical point where superconductivity first appears,
consistent with an exotic quantum phase transition between the two phases [7].
We also demonstrate that the pseudogap phenomenon in the electron-doped
materials, which is associated with pronounced charge anomalies [8-11], arises
from a build-up of spin correlations, in agreement with recent theoretical
proposals [12, 13].Comment: 5 pages, 4 figure
Fine structure of alpha decay in odd nuclei
Using an alpha decay level scheme, an explanation for the fine structure in
odd nuclei is evidenced by taking into account the radial and rotational
couplings between the unpaired nucleon and the core of the decaying system. It
is stated that the experimental behavior of the alpha decay fine structure
phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review
- …