25 research outputs found
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ΅Π½Π΄ Π΄Π»Ρ ΠΌΠΈΠΊΡΠΎΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ
A research stand for microplasma treatment of object surfaces with the ability to move the discharge zone along the object using a program-controlled linear stepper motor has been developed. The design of the stand allows the use of different types of plasma generation systems, as well as processing with feeding of various gases such as air, nitrogen, oxygen, etc. into the discharge zone. The research bench is equipped with measuring equipment for monitoring the electrical and physical characteristics of the discharge (digital oscilloscopes, optical emission spectrometer, air ion meter, etc.). A microhardness tester, goniometer, interference microscope, tribometer, tensile testing machine, etc. can be used to further evaluate the quality and characteristics of the treated surfaces. Examples of the electrical characteristics of discharge devices tested as part of the research stand, optical emission spectroscopy of plasma, and results of measurements of the contact angle of treated objects surfaces are given.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ΅Π½Π΄ Π΄Π»Ρ ΠΌΠΈΠΊΡΠΎΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·ΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ΄Π° Π²Π΄ΠΎΠ»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ°Π³ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ ΡΡΠ΅Π½Π΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°Π·Π½ΡΠ΅ ΡΠΈΠΏΡ ΡΠΈΡΡΠ΅ΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ Ρ ΠΏΠΎΠ΄Π°ΡΠ΅ΠΉ Π² Π·ΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ΄Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π³Π°Π·ΠΎΠ², ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π²ΠΎΠ·Π΄ΡΡ
, Π°Π·ΠΎΡ, ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ ΠΈ Ρ. Π΄. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ΅Π½Π΄ ΠΎΡΠ½Π°ΡΠ΅Π½ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ°Π·ΡΡΠ΄Π° (ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΎΡΡΠΈΠ»Π»ΠΎΠ³ΡΠ°ΡΡ, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ, Π°ΡΡΠΎΠΈΠΎΠ½ΠΎΠΌΠ΅ΡΡ ΠΈ Π΄Ρ.). ΠΠ»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΌΠΈΠΊΡΠΎΡΠ²Π΅ΡΠ΄ΠΎΠΌΠ΅Ρ, Π³ΠΎΠ½ΠΈΠΎΠΌΠ΅ΡΡ, ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ, ΡΡΠΈΠ±ΠΎΠΌΠ΅ΡΡ, ΡΠ°Π·ΡΡΠ²Π½Π°Ρ ΠΌΠ°ΡΠΈΠ½Π° ΠΈ Ρ. Π΄. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ°Π·ΡΡΠ΄Π½ΡΡ
ΡΡΡΡΠΎΠΉΡΡΠ², Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π½Π΄Π°, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΡ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΡΠ°Π΅Π²ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²
Molecular MRI of Inflammation in Atherosclerosis
Inflammatory activity in atherosclerotic plaque is a risk factor for plaque rupture and atherothrombosis and may direct interventional therapy. Inflammatory activity can be evaluated at the (sub)cellular level using in vivo molecular MRI. This paper reviews recent progress in contrast-enhanced molecular MRI to visualize atherosclerotic plaque inflammation. Various MRI contrast agents, among others ultra-small particles of iron oxide, low-molecular-weight Gd-chelates, micelles, liposomes, and perfluorocarbon emulsions, have been used for in vivo visualization of various inflammation-related targets, such as macrophages, oxidized LDL, endothelial cell expression, plaque neovasculature, MMPs, apoptosis, and activated platelets/thrombus. An enzyme-activatable magnetic resonance contrast agent has been developed to study myeloperoxidase activity in inflamed plaques. Agents creating contrast based on the chemical exchange saturation transfer mechanism were used for thrombus imaging. Transfer of these molecular MRI techniques to the clinic will critically depend on the safety profiles of these newly developed magnetic resonance contrast agents
Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications
Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohnβs disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p
Research of the wettability angle of steel, glass and silicon plates after treatment with a low-freqency arc discharge
ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»Π° ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² (ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉ, ΡΡΠ΅ΠΊΠ»ΠΎ, ΡΡΠ°Π»Ρ) ΠΏΡΠΈ ΡΠ°Π·Π½ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π½ΠΈΠ·ΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ Π΄ΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°Π·ΡΡΠ΄Π°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄ΠΎ 10 ΡΠ΅ΠΊΡΠ½Π΄ ΡΠ³ΠΎΠ» ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠ°Π·Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π΄ΠΎ 3-4 ΡΠ°Π·. ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΠ»Π°Π·ΠΌΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π±ΠΎΠ»Π΅Π΅ 10 ΡΠ΅ΠΊΡΠ½Π΄ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π° ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ. The analysis of changes in the angle of wettability of the surface of various materials (silicon, glass, steel) at different times of treatment with low-frequency arc discharge plasma is carried out. It is shown that when processing up to 10 seconds, the wettability angle of the surface of different materials decreases up to 3-4 times. Plasma treatment of the surface of materials for more than 10 seconds does not lead to a significant decrease in the angle of wetting
In Vivo Targeting Of Inflammation-Associated Myeloid-Related Protein 8/14 Via Gadolinium Immunonanoparticles
Moving queries over mobile objects are an important type of query in moving object database systems. In recent years, there have been quite a few works in this area. Due to the high frequency in location updates and the expensive cost of continuous query processing, server computation capacity and wireless communication bandwidth are the two limiting factors for large-scale deployment of moving object database systems. Many techniques have been proposed to address the server bottleneck including one using distributed servers. To address both scalability factors, distributed query processing techniques have been considered. These schemes enable moving objects to participate in query processing to substantially reduce the demand on server computation, and wireless communications associated with location updates. Most of these techniques, however, assume an open-space environment. Since Euclidean distance is different from network distance, techniques designed specifically for an open space cannot be easily adapted for a spatial network. In this paper, we present a distributed framework which can answer moving query over moving objects in a spatial network. To illustrate the effectiveness of the proposed framework, we study two representative moving queries, namely, moving range queries and moving k-nearest-neighbor queries. Detailed algorithms and communication mechanisms are presented. The simulation studies indicate that the proposed technique can significantly reduce server workload and wireless communication cost. Β© Springer Science+Business Media, LLC 2011
Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet
Abstract
Background
Inflammation and oxidative stress play critical roles in the pathogenesis of inhaled air pollutant-mediated metabolic disease. Inflammation in the adipose tissues niches are widely believed to exert important effects on organ dysfunction. Recent data from both human and animal models suggest a role for inflammation and oxidative stress in epicardial adipose tissue (EAT) as a risk factor for the development of cardiovascular disease. We hypothesized that inhalational exposure to concentrated ambient fine particulates (CAPs) and ozone (O3) exaggerates inflammation and oxidative stress in EAT and perirenal adipose tissue (PAT).
Methods
Eight- week-old Male SpragueβDawley rats were fed a normal diet (ND) or high fructose diet (HFr) for 8Β weeks, and then exposed to ambient AIR, CAPs at a mean of 356Β ΞΌg/m3, O3 at 0.485Β ppm, or CAPs (441Β ΞΌg/m3)β+βO3 (0.497Β ppm) in Dearborn, MI, 8Β hours/day, 5Β days/week, for 9Β days over 2Β weeks.
Results
EAT and PAT showed whitish color in gross, and less mitochondria, higher mRNA expression of white adipose specific and lower brown adipose specific genes than in brown adipose tissues. Exposure to CAPs and O3 resulted in the increase of macrophage infiltration in both EAT and PAT of HFr groups. Proinflammatory genes of Tnf-Ξ±, Mcp-1 and leptin were significantly upregulated while IL-10 and adiponectin, known as antiinflammatory genes, were reduced after the exposures. CAPs and O3 exposures also induced an increase in inducible nitric oxide synthase (iNOS) protein expression, and decrease in mitochondrial area in EAT and PAT. We also found significant increases in macrophages of HFr-O3 rats. The synergetic interaction of HFr and dirty air exposure on the inflammation was found in most of the experiments. Surprisingly, exposure to CAPs or O3 induced more significant inflammation and oxidative stress than co-exposure of CAPs and O3 in EAT and PAT.
Conclusion
EAT and PAT are both white adipose tissues. Short-term exposure to CAPs and O3, especially with high fructose diet, induced inflammation and oxidative stress in EAT and PAT in rats. These findings may provide a link between air-pollution exposure and accelerated susceptibility to cardiovascular disease and metabolic complications.http://deepblue.lib.umich.edu/bitstream/2027.42/115881/1/12989_2013_Article_268.pd
Research stand for microplasma surface treatment of materials at atmospheric pressure
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ΅Π½Π΄ Π΄Π»Ρ ΠΌΠΈΠΊΡΠΎΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·ΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ΄Π° Π²Π΄ΠΎΠ»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎ-ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ°Π³ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ ΡΡΠ΅Π½Π΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°Π·Π½ΡΠ΅ ΡΠΈΠΏΡ ΡΠΈΡΡΠ΅ΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ Ρ ΠΏΠΎΠ΄Π°ΡΠ΅ΠΉ Π² Π·ΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ΄Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π³Π°Π·ΠΎΠ², ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π²ΠΎΠ·Π΄ΡΡ
, Π°Π·ΠΎΡ, ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ ΠΈ Ρ. Π΄. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΡΠ΅Π½Π΄ ΠΎΡΠ½Π°ΡΠ΅Π½ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ
ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ°Π·ΡΡΠ΄Π° (ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΎΡΡΠΈΠ»Π»ΠΎΠ³ΡΠ°ΡΡ, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΉ
ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ, Π°ΡΡΠΎΠΈΠΎΠ½ΠΎΠΌΠ΅ΡΡ ΠΈ Π΄Ρ.). ΠΠ»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΌΠΈΠΊΡΠΎΡΠ²Π΅ΡΠ΄ΠΎΠΌΠ΅Ρ, Π³ΠΎΠ½ΠΈΠΎΠΌΠ΅ΡΡ, ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΠΉ
ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ, ΡΡΠΈΠ±ΠΎΠΌΠ΅ΡΡ, ΡΠ°Π·ΡΡΠ²Π½Π°Ρ ΠΌΠ°ΡΠΈΠ½Π° ΠΈ Ρ. Π΄. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ
ΡΠ°Π·ΡΡΠ΄Π½ΡΡ
ΡΡΡΡΠΎΠΉΡΡΠ², Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π½Π΄Π°, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΠΎΠΉ
ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΡ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΡΠ°Π΅Π²ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². A research stand for microplasma treatment of object surfaces with the ability to move the discharge zone along the object using a program-controlled linear stepper motor has been developed. The design of the stand allows the use of different types of plasma generation systems, as well as processing with feeding of various gases such as air, nitrogen, oxygen, etc. into the discharge zone. The research bench is equipped with measuring equipment for monitoring the electrical and physical characteristics of the discharge (digital oscilloscopes, optical emission spectrometer, air ion meter, etc.). A microhardness tester, goniometer, interference microscope, tribometer, tensile testing machine, etc. can be used to further evaluate the quality and characteristics of the treated surfaces. Examples of the electrical characteristics of discharge devices tested as part of the research stand, optical emission spectroscopy of plasma, and results of measurements of the contact angle of treated objects surfaces are given