4 research outputs found

    Adaptive wireless power transfer in mobile ad hoc networks

    Get PDF
    We investigate the interesting impact of mobility on the problem of efficient wireless power transfer in ad hoc networks. We consider a set of mobile agents (consuming energy to perform certain sensing and communication tasks), and a single static charger (with finite energy) which can recharge the agents when they get in its range. In particular, we focus on the problem of efficiently computing the appropriate range of the charger with the goal of prolonging the network lifetime. We first demonstrate (under the realistic assumption of fixed energy supplies) the limitations of any fixed charging range and, therefore, the need for (and power of) a dynamic selection of the charging range, by adapting to the behavior of the mobile agents which is revealed in an online manner. We investigate the complexity of optimizing the selection of such an adaptive charging range, by showing that two simplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy

    Energy-aware tree network formation among computationally weak nodes

    Get PDF
    We study the fundamental problem of distributed network formation among mobile agents of limited computational power that aim to achieve energy balance by wirelessly transmitting and receiving energy in a peer-to-peer manner. Specifically, we design simple distributed protocols consisting of a small number of states and interaction rules for the formation of arbitrary and k-ary tree networks. Furthermore, we evaluate (theoretically and also using computer simulations) a plethora of energy redistribution protocols that exploit different levels of knowledge in order to achieve desired energy distributions among the agents which require that every agent has exactly or at least twice the energy of the agents of higher depth, according to the structure of the network. Our study shows that without using any knowledge about the network structure, such energy distributions cannot be achieved in a timely manner, meaning that there might be high energy loss during the redistribution process. On the other hand, only a few extra bits of information seem to be enough to guarantee quick convergence to energy distributions that satisfy particular properties, yielding low energy loss
    corecore