30 research outputs found

    Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    Get PDF
    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress

    Exposure to Sodium Fluoride Produces Signs of Apoptosis in Rat Leukocytes

    Get PDF
    Fluoride is naturally present in the earth’s crust and can be found in rocks, coal, and clay; thus, it can be found in small quantities in water, air, plants, and animals. Therefore, humans are exposed to fluoride through food, drinking water, and in the air they breathe. Flouride is essential to maintain bone strength and to protect against dental decay, but if it is absorbed too frequently, it can cause tooth decay, osteoporosis, and damage to kidneys, bones, nerves, and muscles. Therefore, the present work was aimed at determining the effect of intake of sodium fluoride (NaF) as an apoptosis inducer in leukocytes of rats treated for eight weeks with 1 or 50 parts per million (ppm) NaF. Expression of p53, bcl-2, and caspade-3 were used as apoptotic and general metabolism indicators of leukocyte-like indicators of the (INT) oxidation system. Male rats were exposed to NaF (1 and 500 ppm) for eight weeks, and then sacrificed weekly to obtain blood samples. Expression of p53, bcl-2, and caspase-3 were determined in leukocytes by Western blot, and general metabolism of leukocytes was analyzed with a commercial kit. We found changes in the expression of the proteins described, especially when the animals received 50 ppm of NaF. These results indicate that NaF intoxication can be an apoptosis inducer in rat leukocytes treated with the compound for eight weeks

    Comparative Analysis of Circulating Endothelial Progenitor Cells in Age-Related Macular Degeneration Patients Using Automated Rare Cell Analysis (ARCA) and Fluorescence Activated Cell Sorting (FACS)

    Get PDF
    BACKGROUND: Patients with age-related macular degeneration (ARMD) begin with non-neovascular (NNV) phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV) ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs), defined as CD34(+)VEGR2(+) using traditional fluorescence activated cell sorting (FACS), are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA), a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. METHODS: We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. RESULTS: We measured levels of CD34(+)VEGFR2(+) EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17) using ARCA. Interestingly, CD34(+)VEGR2(+) EPC analysis using FACS did not produce similar results (p = 0.94). CONCLUSIONS: CD34(+)VEGR2(+) may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample size were suggestive of a trend in ARMD using ARCA but not FACS. ARCA could be a helpful tool for developing a predictive test for ARMD phenotype conversion
    corecore