3,177 research outputs found

    Features of ion acceleration by circularly polarized laser pulses

    Full text link
    The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.Comment: 4 pages, 4 figure

    "Single-cycle" ionization effects in laser-matter interaction

    Get PDF
    We investigate numerically effects related to ``single-cycle'' ionization of dense matter by an ultra-short laser pulse. The strongly non-adiabatic response of electrons leads to generation of a megagauss steady magnetic field in laser-solid interaction. By using two-beam interference, it is possible to create periodic density structures able to trap light and to generate relativistic ionization frontsComment: 12 pages, 6 figures, to be published in Laser and Particle Beam

    Solitary versus Shock Wave Acceleration in Laser-Plasma Interactions

    Full text link
    The excitation of nonlinear electrostatic waves, such as shock and solitons, by ultraintense laser interaction with overdense plasmas and related ion acceleration are investigated by numerical simulations. Stability of solitons and formation of shock waves is strongly dependent on the velocity distribution of ions. Monoenergetic components in ion spectra are produced by "pulsed" reflection from solitary waves. Possible relevance to recent experiments on "shock acceleration" is discussed.Comment: 4 pages, 4 figure

    Laser ion acceleration using a solid target coupled with a low density layer

    Full text link
    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.Comment: 9 pages, 11 figures. Submitted to Physical Review

    Two-surface wave decay: improved analytical theory and effects on electron acceleration

    Full text link
    Two-surface wave decay (TSWD), i.e. the parametric excitation of electron surface waves, was recently proposed as an absorption mechanism in the interaction of ultrashort, intense laser pulses with solid targets. We present an extension of the fluid theory of TSWD to a warm plasma which treats boundary effects consistently. We also present test-particle simulations showing localized enhancement of electron acceleration by TSWD fields; this effect leads to a modulation of the current density entering into the target and may seed current filamentation instabilities.Comment: 4 figures, submitted to Appl.Phys.B (special issue from HFSW X conference, Biarritz, France, Oct 12-15 2003); slightly revised tex

    Analyse chimique continue de la mer: II. Mission internationale <i>Mechelen</i> 1968 en Méditerranée

    Get PDF
    Results of automatic and continuous analysis of both physical and chemical parameters of sea water between Marbella (Malaga) and Brest (Mechelen cruise, Mediterranean 1968, supported by the « Institut royal des Sciences naturelles de Belgique ») are studied in this paper.Two conclusions are reached: 1° The distribution of salinity, temperature and nitrate, sometimes anomalous, appears to follow some rythm or law. 2° There appears a close spacial relationship too between these anomalies and fishery. Then, it is possible to use the continuous automatic method for the exploratory work on fishery technology

    Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas

    Full text link
    The evolution of the filamentation instability produced by two counter-streaming pair plasmas is studied with particle-in-cell (PIC) simulations in both one (1D) and two (2D) spatial dimensions. Radiation friction effects on particles are taken into account. After an exponential growth of both the magnetic field and the current density, a nonlinear quasi-stationary phase sets up characterized by filaments of opposite currents. During the nonlinear stage, a strong broadening of the particle energy spectrum occurs accompanied by the formation of a peak at twice their initial energy. A simple theory of the peak formation is presented. The presence of radiative losses does not change the dynamics of the instability but affects the structure of the particle spectra.Comment: 8 pages, 8 figures, submitted to MNRA

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice
    corecore