1,667 research outputs found
Real-time detection of individual atoms falling through a high-finesse optical cavity
The enhanced coupling between atoms and photons inside a high-finesse optical cavity provides a novel basis for optical measurements that continuously monitor atomic degrees of freedom. We describe an experiment in which cavity quantum-electrodynamic effects are utilized for real-time detection of individual atoms falling through an optical cavity after being dropped from a magneto-optical trap. Our technique permits experiments that are triggered by the presence of a single optimally coupled atom within the cavity mode volume
Remnants of semiclassical bistability in the few-photon regime of cavity QED
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity
containing a strongly-coupled Cs atom is used to probe the dynamic
optical response in a regime where semiclassical theory predicts bistability
but strong quantum corrections should apply. While quantum fluctuations
destabilize true equilibrium bistability, our observations confirm the
existence of metastable states with finite lifetimes and a hysteretic response
is apparent when the optical drive is modulated on comparable timescales. Our
experiment elucidates remnant semiclassical behavior in the attojoule (
photon) regime of single-atom cavity QED, of potential significance for
ultra-low power photonic signal processing.Comment: 14 pages, 7 figure
The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying
Nanophotonic technologies offer great promise for ultra-low power optical
signal processing, but relatively few nonlinear-optical phenomena have yet been
explored as bases for robust digital
modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a
single two-level system (TLS) coupled strongly to an optical resonator can
impart binary phase modulation on a saturating probe beam. Our experiment
relies on spontaneous emission to induce occasional transitions between
positive and negative phase shifts---with each such edge corresponding to a
dissipated energy of just one photon ( aJ)---but an optical
control beam could be used to trigger additional phase switching at signalling
rates above this background. Although our ability to demonstrate controlled
switching in our atom-based experiment is limited, we discuss prospects for
exploiting analogous physics in a nanophotonic device incorporating a quantum
dot as the TLS to realize deterministic binary phase modulation with control
power in the aJ/edge regime.Comment: 7 pages, 4 figure
A new bound of the ℒ2[0, T]-induced norm and applications to model reduction
We present a simple bound on the finite horizon ℒ2/[0, T]-induced norm of a linear time-invariant (LTI), not necessarily stable system which can be efficiently computed by calculating the ℋ∞ norm of a shifted version of the original operator. As an application, we show how to use this bound to perform model reduction of unstable systems over a finite horizon. The technique is illustrated with a non-trivial physical example relevant to the appearance of time-irreversible phenomena in statistical physics
Design of nanophotonic circuits for autonomous subsystem quantum error correction
We reapply our approach to designing nanophotonic quantum memories to
formulate an optical network that autonomously protects a single logical qubit
against arbitrary single-qubit errors. Emulating the 9 qubit Bacon-Shor
subsystem code, the network replaces the traditionally discrete syndrome
measurement and correction steps by continuous, time-independent optical
interactions and coherent feedback of unitarily processed optical fields.Comment: 12 pages, 4 figure
Trapping of single atoms in cavity QED
By integrating the techniques of laser cooling and trapping with those of
cavity quantum electrodynamics (QED), single Cesium atoms have been trapped
within the mode of a small, high finesse optical cavity in a regime of strong
coupling. The observed lifetime for individual atoms trapped within the cavity
mode is ms, and is limited by fluctuations of light forces
arising from the far-detuned intracavity field. This initial realization of
trapped atoms in cavity QED should enable diverse protocols in quantum
information science.Comment: 4 pages, 4 figure
Spontaneous dressed-state polarization in the strong driving regime of cavity QED
We utilize high-bandwidth phase quadrature homodyne measurement of the light
transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to
detect excess phase noise induced by a single intracavity atom. We analyze the
correlation properties and driving-strength dependence of the atom-induced
phase noise to establish that it corresponds to the long-predicted phenomenon
of spontaneous dressed-state polarization. Our experiment thus provides a
demonstration of cavity quantum electrodynamics in the strong driving regime,
in which one atom interacts strongly with a many-photon cavity field to produce
novel quantum stochastic behavior.Comment: 4 pages, 4 color figure
Effects of motion in cavity QED
We consider effects of motion in cavity quantum electrodynamics experiments
where single cold atoms can now be observed inside the cavity for many Rabi
cycles. We discuss the timescales involved in the problem and the need for good
control of the atomic motion, particularly the heating due to exchange of
excitation between the atom and the cavity, in order to realize nearly unitary
dynamics of the internal atomic states and the cavity mode which is required
for several schemes of current interest such as quantum computing. Using a
simple model we establish ultimate effects of the external atomic degrees of
freedom on the action of quantum gates. The perfomance of the gate is
characterized by a measure based on the entanglement fidelity and the motional
excitation caused by the action of the gate is calculated. We find that schemes
which rely on adiabatic passage, and are not therefore critically dependent on
laser pulse areas, are very much more robust against interaction with the
external degrees of freedom of atoms in the quantum gate.Comment: 10 pages, 5 figures, REVTeX, to be published in Walls Symposium
Special Issue of Journal of Optics
- …
