63 research outputs found
Cyclooxygenase inhibitors and the exercise-induced stress response
Objective. This study investigated the effects of single dosages of the non-steroidal anti-inflammatory drug (NSAID) naproxen, and of the coxib, rofecoxib, on the exercise-induced stress response. Design. Eight subjects (age 20.9 ± 1.1 years, weight 70.4
± 3.9 kg, height 170.9 ± 6.7 cm, body surface area 1.82 ± 0.09 m2, body mass index 24.1 ± 1.3 kg.m-2) took part in a double-blind, drug-placebo, cross-over design study. The
experimental procedures were performed on 3 occasions on each volunteer, i.e. once on placebo, once on naproxen (single dose of 1 000 mg) and once on rofecoxib (single dose of 50 mg). Results. Mean post-exercise cortisol values were significantly higher than pre-exercise values with the subjects on placebo (p = 0.0365) and rofecoxib (p = 0.0208), but not on naproxen (p = 0.0732). Post-exercise oral temperatures were significantly higher than pre-exercise temperature values on placebo (p = 0.0153) and rofecoxib (p = 0.0424),
but not on naproxen (p = 0.5444). Conclusion. The results of this study suggest a role for
cyclooxygenase-1 (COX-1) in the exercise-induced cortisol and temperature response to exercise. South African Journal of Sports Medicine Vol. 18 (1) 2006: pp. 4-
Pro- and Anti-Inflammatory Cytokines during Immune Stimulation: Modulation of Iron Status and Red Blood Cell Profile
Forty-eight patients were subdivided according to C-reactive protein (CRP) levels, resulting in 19 patients with normal (2.8 ± 2.8 mg/L) and 29 with elevated (82.2 ± 76.2 mg/L) CRP levels. The elevated CRP group had iron and red blood cell (RBC) profiles characteristic of chronic immune stimulation (CIS), and the normal CRP group, profiles of true iron deficiency. Normal relationships between storage iron, bioavailable iron, and RBC indices were absent in the elevated CRP group—implying the role of iron as major determinant of the RBC profile to be diminished during CIS. The elevated CRP group had significant increases in proinflammatory cytokines (INF-γ, TNF-α, Il-1β, Il-6, and Il-8). Anti-inflammatory cytokine levels were normal, except for Il-10, supporting previous indications that Il-10 contributes to reducing bioavailable iron. Regression analysis suggested decreases in transferrin to be related to increases in Il-8 and an increase in ferritin to be related to a decrease in Il-12 levels. TGF-β levels were positively related to transferrin and negatively to ferritin
Cyclooxygenase inhibitors and the exercise-induced stress response
Objective. This study investigated the effects of single dosages of the non-steroidal anti-inflammatory drug (NSAID) naproxen, and of the coxib, rofecoxib, on the exercise-induced stress response. Design. Eight subjects (age 20.9 ± 1.1 years, weight 70.4
± 3.9 kg, height 170.9 ± 6.7 cm, body surface area 1.82 ± 0.09 m2, body mass index 24.1 ± 1.3 kg.m-2) took part in a double-blind, drug-placebo, cross-over design study. The
experimental procedures were performed on 3 occasions on each volunteer, i.e. once on placebo, once on naproxen (single dose of 1 000 mg) and once on rofecoxib (single dose of 50 mg). Results. Mean post-exercise cortisol values were significantly higher than pre-exercise values with the subjects on placebo (p = 0.0365) and rofecoxib (p = 0.0208), but not on naproxen (p = 0.0732). Post-exercise oral temperatures were significantly higher than pre-exercise temperature values on placebo (p = 0.0153) and rofecoxib (p = 0.0424),
but not on naproxen (p = 0.5444). Conclusion. The results of this study suggest a role for
cyclooxygenase-1 (COX-1) in the exercise-induced cortisol and temperature response to exercise. South African Journal of Sports Medicine Vol. 18 (1) 2006: pp. 4-
Body iron metabolism and pathophysiology of iron overload
Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes
Trends in Outcomes for Neonates Born Very Preterm and Very Low Birth Weight in 11 High-Income Countries
Objective
To evaluate outcome trends of neonates born very preterm in 11 high-income countries participating in the International Network for Evaluating Outcomes of neonates. Study design In a retrospective cohort study, we included 154 233 neonates admitted to 529 neonatal units between January 1, 2007, and December 31, 2015, at 24(0/7) to 31(6/7) weeks of gestational age and birth weight <1500 g. Composite outcomes were in-hospital mortality or any of severe neurologic injury, treated retinopathy of prematurity, and bronchopulmonary dysplasia (BPD); and same composite outcome excluding BPD. Secondary outcomes were mortality and individual morbidities. For each country, annual outcome trends and adjusted relative risks comparing epoch 2 (2012-2015) to epoch 1 (2007-2011) were analyzed.
Results
For composite outcome including BPD, the trend decreased in Canada and Israel but increased in Australia and New Zealand, Japan, Spain, Sweden, and the United Kingdom. For composite outcome excluding BPD, the trend decreased in all countries except Spain, Sweden, Tuscany, and the United Kingdom. The risk of composite outcome was lower in epoch 2 than epoch 1 in Canada (adjusted relative risks 0.78; 95% CI 0.74-0.82) only. The risk of composite outcome excluding BPD was significantly lower in epoch 2 compared with epoch 1 in Australia and New Zealand, Canada, Finland, Japan, and Switzerland. Mortality rates reduced in most countries in epoch 2. BPD rates increased significantly in all countries except Canada, Israel, Finland, and Tuscany.
Conclusions
In most countries, mortality decreased whereas BPD increased for neonates born very preterm
Deciphering Proteomic Signatures of Early Diapause in Nasonia
Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause
Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera
<p>Abstract</p> <p>Background</p> <p>Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. <it>Helicoverpa armigera </it>(Har) undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH), we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation.</p> <p>Results</p> <p>We constructed two SSH libraries (forward, F and reverse, R) to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation.</p> <p>Conclusion</p> <p>Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.</p
Lysosomes in iron metabolism, ageing and apoptosis
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place
Anemia and iron homeostasis in a cohort of HIV-infected patients in Indonesia
Contains fulltext :
97632.pdf (publisher's version ) (Open Access)BACKGROUND: Anemia is a common clinical finding in HIV-infected patients and iron deficiency or redistribution may contribute to the development of low hemoglobin levels. Iron overload is associated with a poor prognosis in HIV and Hepatitis C virus infections. Iron redistribution may be caused by inflammation but possibly also by hepatitis C co-infection. We examined the prevalence of anemia and its relation to mortality in a cohort of HIV patients in a setting where injecting drug use (IDU) is a main mode of HIV transmission, and measured serum ferritin and sTfR, in relation to anemia, inflammation, stage of HIV disease, ART and HCV infection. METHODS: Patient characteristics, ART history and iron parameters were recorded from adult HIV patients presenting between September 2007 and August 2009 in the referral hospital for West Java, Indonesia. Kaplan-Meier estimates and Cox's regression were used to assess factors affecting survival. Logistic regression was used to identity parameters associated with high ferritin concentrations. RESULTS: Anemia was found in 49.6% of 611 ART-naive patients, with mild (Hb 10.5 -12.99 g/dL for men; and 10.5-11.99 g/dL for women) anemia in 62.0%, and moderate to severe anemia (Hb < 10.5 g/dL) in 38.0%. Anemia remained an independent factor associated with death, also after adjustment for CD4 count and ART (p = 0.008). Seroprevalence of HCV did not differ in patients with (56.9%) or without anemia (59.6%). Serum ferritin concentrations were elevated, especially in patients with anemia (p = 0.07) and/or low CD4 counts (p < 0.001), and were not related to hsCRP or HCV infection. Soluble TfR concentrations were low and not related to Hb, CD4, hsCRP or ART. CONCLUSION: HIV-associated anemia is common among HIV-infected patients in Indonesia and strongly related to mortality. High ferritin with low sTfR levels suggest that iron redistribution and low erythropoietic activity, rather than iron deficiency, contribute to anemia. Serum ferritin and sTfR should be used cautiously to assess iron status in patients with advanced HIV infection
- …