7,527 research outputs found
Direct Evidence for the Source of Reported Magnetic Behavior in "CoTe"
In order to unambiguously identify the source of magnetism reported in recent
studies of the Co-Te system, two sets of high-quality, epitaxial CoTe films
(thickness 300 nm) were prepared by pulse laser deposition (PLD).
X-ray diffraction (XRD) shows that all of the films are epitaxial along the
[001] direction and have the hexagonal NiAs structure. There is no indication
of any second phase metallic Co peaks (either or ) in the XRD
patterns. The two sets of CoTe films were grown on various substrates with
PLD targets having Co:Te in the atomic ratio of 50:50 and 35:65. From the
measured lattice parameters for the former and
for the latter, the compositions CoTe (63.1% Te) and CoTe
(63.8% Te), respectively, are assigned to the principal phase. Although XRD
shows no trace of metallic Co second phase, the magnetic measurements do show a
ferromagnetic contribution for both sets of films with the saturation
magnetization values for the CoTe films being approximately four times
the values for the CoTe films. Co spin-echo nuclear magnetic
resonance (NMR) clearly shows the existence of metallic Co inclusions in the
films. The source of weak ferromagnetism reported in several recent studies is
due to the presence of metallic Co, since the stoichiometric composition "CoTe"
does not exist.Comment: 19 pages, 7 figure
Automation in optometry (the implications and impact) and the use of computers in optometry
Automation in optometry (the implications and impact) and the use of computers in optometr
A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146
We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous
(L_{IR}=4e11 L_sun) brightest cluster galaxy (BCG) in the X-ray-luminous
cluster Z3146 (z=0.29). The spectrum shows strong aromatic emission features,
indicating that the dominant source of the infrared luminosity is star
formation. The most striking feature of the spectrum, however, is the
exceptionally strong molecular hydrogen (H2) emission lines, which seem to be
shock-excited. The line luminosities and inferred warm H2 gas mass (~1e10
M_sun) are 6 times larger than those of NGC 6240, the most H2-luminous galaxy
at z <~ 0.1. Together with the large amount of cold H2 detected previously
(~1e11 M_sun), this indicates that the Z3146 BCG contains disproportionately
large amounts of both warm and cold H2 gas for its infrared luminosity, which
may be related to the intracluster gas cooling process in the cluster core.Comment: 13 pages, 3 figures, 1 table; Accepted for publication in ApJ
Quantum Walks, Quantum Gates and Quantum Computers
The physics of quantum walks on graphs is formulated in Hamiltonian language,
both for simple quantum walks and for composite walks, where extra discrete
degrees of freedom live at each node of the graph. It is shown how to map
between quantum walk Hamiltonians and Hamiltonians for qubit systems and
quantum circuits; this is done for both a single- and multi-excitation coding,
and for more general mappings. Specific examples of spin chains, as well as
static and dynamic systems of qubits, are mapped to quantum walks, and walks on
hyperlattices and hypercubes are mapped to various gate systems. We also show
how to map a quantum circuit performing the quantum Fourier transform, the key
element of Shor's algorithm, to a quantum walk system doing the same. The
results herein are an essential preliminary to a Hamiltonian formulation of
quantum walks in which coupling to a dynamic quantum environment is included.Comment: 17 pages, 10 figure
- …