375 research outputs found
Finite element modelling of inter-ply delamination and intra-yarn cracking in textile laminates
The aim of the current study is to demonstrate the effect of inter-ply delamination on stiffness degradation of multi-ply woven composites. Such a demonstration becomes possible due to new technique of modelling textile laminates. It is based on set of boundary value problems for unit cell of a single ply, where boundary conditions imitate interaction with the other plies. Once these problems are solved, local stress distribution and stiffness of the laminate are determined analytically as function of number of the plies and local stress/strain fields obtained in these problems. Hence, it opens the road for an efficient modelling of delamination, which is described as gradual reduction of plies in the laminate
Internal structure of structurally stitched NCF preform
The paper addresses the experimental investigation of the unit cell architecture in a structurally stitched multilayer carbon-fibre preform. Each layer is a multiaxial multiply non-crimp fabric (NCF) knit with a non-structural stitching. The term “structural” presumes here that the stitching yarn does not only consolidate the plies (as the non-structural one does) but also forms a 3D reinforcement. One stitching technique — tufting — is studied, with 120 tex aramide yarn. The experimental data reveals a considerable irregularity of the piercing pattern and fibre distribution
Mixing of fermion fields of opposite parities and baryon resonances
We consider a loop mixing of two fermion fields of opposite parities whereas
the parity is conserved in a Lagrangian. Such kind of mixing is specific for
fermions and has no analogy in boson case. Possible applications of this effect
may be related with physics of baryon resonances. The obtained matrix
propagator defines a pair of unitary partial amplitudes which describe the
production of resonances of spin and different parity or
. The use of our amplitudes for joint description of
partial waves and shows that the discussed effect is clearly
seen in these partial waves as the specific form of interference between
resonance and background. Another interesting application of this effect may be
a pair of partial waves and where the picture is more
complicated due to presence of several resonance states.Comment: 22 pages, 6 figures, more detailed comparison with \pi N PW
Fermion resonance in quantum field theory
We derive accurately the fermion resonance propagator by means of Dyson
summation of the self-energy contribution. It turns out that the relativistic
fermion resonance differs essentially from its boson analog.Comment: 8 pages, 2 figures, revtex4 class; references added, style
correction
- …