8 research outputs found

    Do users benefit from additional information in support of operational drought management decisions in the Ebro basin?

    Get PDF
    We follow a user-based approach to examine how information supports operational drought management decisions in the Ebro basin and how these can benefit from additional information such as from remote sensing data. First we consulted decision-makers at basin, irrigation district and farmer scale to investigate the drought-related decisions they make and the information they use to support their decisions. This allowed us to identify the courses of action available to the farmers and water managers, and to analyse their choices as a function of the information they have available to them. Based on the findings of the consultation, a decision model representing the interrelated decisions of the irrigation association and the farmers was built. The purpose of the model is to quantify the effect of additional information on the decisions made. The modelled decisions, which consider the allocation of water, are determined by the expected availability of water during the irrigation season. This is currently informed primarily by observed reservoir level data. The decision model was then extended to include additional information on snow cover from remote sensing. The additional information was found to contribute to better decisions in the simulation and ultimately higher benefits for the farmers. However, the ratio between the cost of planting and the market value of the crop proved to be a critical aspect in determining the best course of action to be taken and the value of the (additional) information. Risk-averse farmers were found to benefit least from the additional information, while less risk-averse farmers stand to benefit most as the additional information helps them take better informed decisions when weighing their options.</p

    Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Socials. 2008In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography
    corecore