1,305 research outputs found

    Classification of mixed three-qubit states

    Get PDF
    We introduce a classification of mixed three-qubit states, in which we define the classes of separable, biseparable, W- and GHZ-states. These classes are successively embedded into each other. We show that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all entangled states with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family of PPTES "edge" states with maximal ranks.Comment: 4 pages, 1 figur

    Spiral spin textures of bosonic Mott insulator with SU(3) spin-orbit coupling

    Full text link
    We study the Mott phase of three-component bosons, with one particle per site, in an optical lattice by mapping it onto an SU(3) spin model. In the simplest case of full SU(3) symmetry, one obtains a ferromagnetic Heisenberg model. Introducing an SU(3) analog of spin-orbit coupling, additional spin-spin interactions are generated. We first consider the scenario of spin-dependent hopping phases, leading to Dzyaloshinskii-Moriya-type interactions. They result in the formation of spiral spin textures, which in one dimension can be understood by a local unitary transformation. Applying classical Monte Carlo simulations, we extend our study to two-dimensional systems, and systems with "true" spin-orbit coupling, involving spin-changing hoppings

    Separable approximations of density matrices of composite quantum systems

    Get PDF
    We investigate optimal separable approximations (decompositions) of states rho of bipartite quantum systems A and B of arbitrary dimensions MxN following the lines of Ref. [M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998)]. Such approximations allow to represent in an optimal way any density operator as a sum of a separable state and an entangled state of a certain form. For two qubit systems (M=N=2) the best separable approximation has a form of a mixture of a separable state and a projector onto a pure entangled state. We formulate a necessary condition that the pure state in the best separable approximation is not maximally entangled. We demonstrate that the weight of the entangled state in the best separable approximation in arbitrary dimensions provides a good entanglement measure. We prove in general for arbitrary M and N that the best separable approximation corresponds to a mixture of a separable and an entangled state which are both unique. We develop also a theory of optimal separable approximations for states with positive partial transpose (PPT states). Such approximations allow to decompose any density operator with positive partial transpose as a sum of a separable state and an entangled PPT state. We discuss procedures of constructing such decompositions.Comment: 12 pages, 2 figure

    Ultracold atomic Bose and Fermi spinor gases in optical lattices

    Get PDF
    We investigate magnetic properties of Mott-insulating phases of ultracold Bose and Fermi spinor gases in optical lattices. We consider in particular the F=2 Bose gas, and the F=3/2 and F=5/2 Fermi gases. We derive effective spin Hamiltonians for one and two atoms per site and discuss the possibilities of manipulating the magnetic properties of the system using optical Feshbach resonances. We discuss low temperature quantum phases of a 87Rb gas in the F=2 hyperfine state, as well as possible realizations of high spin Fermi gases with either 6Li or 132Cs atoms in the F=3/2 state, and with 173Yb atoms in the F=5/2 state.Comment: 15 pages, 5 figures; a completely new and substantially expanded version with several errors correcte

    Fractional Quantum Hall States in Ultracold Rapidly Rotating Dipolar Fermi Gases

    Get PDF
    We demonstrate the experimental feasibility of incompressible fractional quantum Hall-like states in ultra-cold two dimensional rapidly rotating dipolar Fermi gases. In particular, we argue that the state of the system at filling fraction ν=1/3\nu =1/3 is well-described by the Laughlin wave function and find a substantial energy gap in the quasiparticle excitation spectrum. Dipolar gases, therefore, appear as natural candidates of systems that allow to realize these very interesting highly correlated states in future experiments.Comment: 4 pages, 2 figure
    corecore