41 research outputs found
Long-range correlations and ensemble inequivalence in a generalized ABC model
A generalization of the ABC model, a one-dimensional model of a driven system
of three particle species with local dynamics, is introduced, in which the
model evolves under either (i) density-conserving or (ii) nonconserving
dynamics. For equal average densities of the three species, both dynamical
models are demonstrated to exhibit detailed balance with respect to a
Hamiltonian with long-range interactions. The model is found to exhibit two
distinct phase diagrams, corresponding to the canonical (density-conserving)
and grand canonical (density nonconserving) ensembles, as expected in
long-range interacting systems. The implication of this result to
nonequilibrium steady states, such as those of the ABC model with unequal
average densities, are briefly discussed.Comment: 4 pages, 2 figures. v2: minor changes with an added reference,
published versio
Phase fluctuations in the ABC model
We analyze the fluctuations of the steady state profiles in the modulated
phase of the ABC model. For a system of sites, the steady state profiles
move on a microscopic time scale of order . The variance of their
displacement is computed in terms of the macroscopic steady state profiles by
using fluctuating hydrodynamics and large deviations. Our analytical prediction
for this variance is confirmed by the results of numerical simulations
Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments
The study of the formation of molecular hydrogen on low temperature surfaces
is of interest both because it allows to explore elementary steps in the
heterogeneous catalysis of a simple molecule and because of the applications in
astrochemistry. Here we report results of experiments of molecular hydrogen
formation on amorphous silicate surfaces using temperature-programmed
desorption (TPD). In these experiments beams of H and D atoms are irradiated on
the surface of an amorphous silicate sample. The desorption rate of HD
molecules is monitored using a mass spectrometer during a subsequent TPD run.
The results are analyzed using rate equations and the activation energies of
the processes leading to molecular hydrogen formation are obtained from the TPD
data. We show that a model based on a single isotope provides the correct
results for the activation energies for diffusion and desorption of H atoms.
These results can thus be used to evaluate the formation rate of H_2 on dust
grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio
Ensemble Inequivalence in the Spherical Spin Glass Model with Nonlinear Interactions
We investigate the ensemble inequivalence of the spherical spin glass model
with nonlinear interactions of polynomial order . This model is solved
exactly for arbitrary and is shown to have first-order phase transitions
between the paramagnetic and spin glass or ferromagnetic phases for .
In the parameter region around the first-order transitions, the solutions give
different results depending on the ensemble used for the analysis. In
particular, we observe that the microcanonical specific heat can be negative
and the phase may not be uniquely determined by the temperature.Comment: 15 pages, 10 figure
The grand canonical ABC model: a reflection asymmetric mean field Potts model
We investigate the phase diagram of a three-component system of particles on
a one-dimensional filled lattice, or equivalently of a one-dimensional
three-state Potts model, with reflection asymmetric mean field interactions.
The three types of particles are designated as , , and . The system is
described by a grand canonical ensemble with temperature and chemical
potentials , , and . We find that for
the system undergoes a phase transition from a
uniform density to a continuum of phases at a critical temperature . For other values of the chemical potentials the system
has a unique equilibrium state. As is the case for the canonical ensemble for
this model, the grand canonical ensemble is the stationary measure
satisfying detailed balance for a natural dynamics. We note that , where is the critical temperature for a similar transition in
the canonical ensemble at fixed equal densities .Comment: 24 pages, 3 figure
Ensemble Inequivalence and the Spin-Glass Transition
We report on the ensemble inequivalence in a many-body spin-glass model with
integer spin. The spin-glass phase transition is of first order for certain
values of the crystal field strength and is dependent whether it was derived in
the microcanonical or the canonical ensemble. In the limit of infinitely
many-body interactions, the model is the integer-spin equivalent of the
random-energy model, and is solved exactly. We also derive the integer-spin
equivalent of the de Almeida-Thouless line.Comment: 19 pages, 7 figure
Phase diagram of the ABC model with nonconserving processes
The three species ABC model of driven particles on a ring is generalized to
include vacancies and particle-nonconserving processes. The model exhibits
phase separation at high densities. For equal average densities of the three
species, it is shown that although the dynamics is {\it local}, it obeys
detailed balance with respect to a Hamiltonian with {\it long-range
interactions}, yielding a nonadditive free energy. The phase diagrams of the
conserving and nonconserving models, corresponding to the canonical and
grand-canonical ensembles, respectively, are calculated in the thermodynamic
limit. Both models exhibit a transition from a homogeneous to a phase-separated
state, although the phase diagrams are shown to differ from each other. This
conforms with the expected inequivalence of ensembles in equilibrium systems
with long-range interactions. These results are based on a stability analysis
of the homogeneous phase and exact solution of the hydrodynamic equations of
the models. They are supported by Monte-Carlo simulations. This study may serve
as a useful starting point for analyzing the phase diagram for unequal
densities, where detailed balance is not satisfied and thus a Hamiltonian
cannot be defined.Comment: 32 page, 7 figures. The paper was presented at Statphys24, held in
Cairns, Australia, July 201
Molecular Hydrogen Formation on Amorphous Silicates Under Interstellar Conditions
Experimental results on the formation of molecular hydrogen on amorphous
silicate surfaces are presented for the first time and analyzed using a rate
equation model. The energy barriers for the relevant diffusion and desorption
processes are obtained. They turn out to be significantly higher than those
obtained earlier for polycrystalline silicates, demonstrating the importance of
grain morphology. Using these barriers we evaluate the efficiency of molecular
hydrogen formation on amorphous silicate grains under interstellar conditions.
It is found that unlike polycrystalline silicates, amorphous silicate grains
are efficient catalysts of H formation within a temperature range which
is relevant to diffuse interstellar clouds. The results also indicate that the
hydrogen molecules are thermalized with the surface and desorb with low kinetic
energy. Thus, they are unlikely to occupy highly excited states.Comment: 5 pages, 3 figures, 1 table. Accepted to ApJL. Shortened a bi
Phase diagram of the ABC model with nonequal densities
The ABC model is a driven diffusive exclusion model, composed of three
species of particles that hop on a ring with local asymmetric rates. In the
weak asymmetry limit, where the asymmetry vanishes with the length of the
system, the model exhibits a phase transition between a homogenous state and a
phase separated state. We derive the exact solution for the density profiles of
the three species in the hydrodynamic limit for arbitrary average densities.
The solution yields the complete phase diagram of the model and allows the
study of the nature of the first order phase transition found for average
densities that deviate significantly from the equal densities point.Comment: 19 pages, 6 figures, submitted to J. Phys.
How do ADHD children perceive their cognitive, affective, and behavioral aspects of anger expression in school setting?
<p>Abstract</p> <p>Background</p> <p>Anger is an ignored research area in children and young adolescents with Attention deficit hyperactivity disorder (ADHD) in the school setting. This study compares school anger dimensions in children and young adolescents with ADHD and a control group.</p> <p>Methods</p> <p>The subjects were a clinical sample of 67 children and young adolescents with ADHD and their parents, with a sample of 91 children from the community of similar age and gender as control group. Anger was measured by the Farsi version of the Multidimensional School Anger Inventory (MSAI).</p> <p>Results</p> <p>The scores of the two components of "Hostile Outlook" and "Positive Coping" were different between the groups. The mean scores for the Anger components did not statistically differ between the children with ADHD and ODD and ADHD without ODD, boys and girls, or different types of ADHD.</p> <p>Conclusion</p> <p>Children with ADHD do not report higher rates of experience of anger and they do not apply destructive strategies more than the control group. However, children with ADHD appear to have a more hostile outlook toward school and their coping strategy is weaker than that of the control group.</p