716 research outputs found
Hyper high NA achromatic interferometer for immersion lithography at 193nm
International audienceAn apparatus for immersion interferometric lithography is described here where the interfering beams are created by illuminating a first diffraction grating followed by a second diffraction grating recombining the diffracted beams onto the photo-resist plane. The main advantage of this system is to be achromatic: thus it is possible to use a basic commercial ArF excimer laser as the exposure source. We present here the calculations made to evaluate the different parameters that can influence the depth-of-focus in the immersion configuration. As the set-up is mainly based on the two diffraction gratings, it matters to properly design it. The purpose of this paper is to show the optimization made on the diffraction gratings in taking into account their fabrication process since they are fabricated using the capabilities of the silicon line available in our laboratory. On one hand, calculations have been done to determine the second grating period as a function of the first grating period and the āimmersion NAā. By simply adding a fluid to a ādryā system, we will indeed be able to improve the depth of focus but not the resolution. In playing with the diffraction grating periods, we are able to benefit from the introduction of the immersion fluid. We have performed simulations in order to optimize the grating diffraction efficiency as a function of the etch depth and the fractional linewidth. Finally we report on first results obtained with the achromatic immersion interferometer. The apparatus was used with a 193 nm GAM excimer laser to print resist patterns having a period of 100 nm with excellent contrast
Tests of mode coupling theory in a simple model for two-component miscible polymer blends
We present molecular dynamics simulations on the structural relaxation of a
simple bead-spring model for polymer blends. The introduction of a different
monomer size induces a large time scale separation for the dynamics of the two
components. Simulation results for a large set of observables probing density
correlations, Rouse modes, and orientations of bond and chain end-to-end
vectors, are analyzed within the framework of the Mode Coupling Theory (MCT).
An unusually large value of the exponent parameter is obtained. This feature
suggests the possibility of an underlying higher-order MCT scenario for dynamic
arrest.Comment: Revised version. Additional figures and citation
Model for performance prediction in multi-axis machining
This paper deals with a predictive model of kinematical performance in 5-axis
milling within the context of High Speed Machining. Indeed, 5-axis high speed
milling makes it possible to improve quality and productivity thanks to the
degrees of freedom brought by the tool axis orientation. The tool axis
orientation can be set efficiently in terms of productivity by considering
kinematical constraints resulting from the set machine-tool/NC unit. Capacities
of each axis as well as some NC unit functions can be expressed as limiting
constraints. The proposed model relies on each axis displacement in the joint
space of the machine-tool and predicts the most limiting axis for each
trajectory segment. Thus, the calculation of the tool feedrate can be performed
highlighting zones for which the programmed feedrate is not reached. This
constitutes an indicator for trajectory optimization. The efficiency of the
model is illustrated through examples. Finally, the model could be used for
optimizing process planning
Cloning whole bacterial genomes in yeast
Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation
Prospects For Gulf of Mexico Environmental Recovery and Restoration
Previous oil spills provide clear evidence that ecosystem restoration efforts are challenging, and recovery can take decades. Similar to the Ixtoc 1 well blowout in 1979, the Deepwater Horizon (DWH) oil spill was enormous both in volume of oil spilled and duration, resulting in environmental impacts from the deep ocean to the Gulf of Mexico coastline. Data collected during the National Resource Damage Assessment showed significant damage to coastal areas (especially marshes), marine organisms, and deep-sea habitat. Previous spills have shown that disparate regions recover at different rates, with especially long-term effects in salt marshes and deepsea habitat. Environmental recovery and restoration in the northern Gulf of Mexico are dependent upon fundamental knowledge of ecosystem processes in the region. PostDWH research data provide a starting point for better understanding baselines and ecosystem processes. It is imperative to use the best science available to fully understand DWH environmental impacts and determine the appropriate means to ameliorate those impacts through restoration. Filling data gaps will be necessary to make better restoration decisions, and establishing new baselines will require long-term studies. Future research, especially via NOAAās RESTORE Science Program and the state-based Centers of Excellence, should provide a path to understanding the potential for restoration and recovery of this vital marine ecosystem
Olfactory dysfunction in young smokers J.
To establish the prevalence of olfactory dysfunction in smoking and non-smoking students of our Faculty who attend the Department of Otolaryngology (ENT) of our Hospital. Materials and method: Students (smokers and non-smokers) that do and do not suffer from olfactory
dysfunction. We applied a questionnaire and a pocket smell test for screening all of the students. Results: We evaluated 207 students, between 18 and 30 years old; 50.7% (n=105) were women and 49.3% (n=102) were men. The smokers among them smoked up to 6 packs per year. One
hundred twenty three students were non-smokers and 84 students were smokers. Of the 84 students who were smokers, 67 (79.7%) answered the Pocket Smell Test correctly (3/3) and 17 (20.2%) students had one or more errors. We had 123 non-smoker students and 103 (83.7%) students answered the Pocket Smell Test correctly and 20 (16.2%) answered with one or more errors. The prevalence of olfactory dysfunction in young smokers with a 95% conidence interval would be 32.8%. Conclusions: This study informed us about olfactory dysfunctions in our student population and their smoking habits. We corroborate that the Pocket Smell Test is reliable with the questionnaire; nevertheless it is a screening test. We have a population of young people who smoke one
cigarette per day and who didnāt have a signiicant alteration in their ability of smell at the time
of the study. This is consistent with medical literature. More studies should be conducted in order to expand this information
Central and peripheral GLP-1 systems independently suppress eating
The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gutābrain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gutābrain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy
Low-temperature anomalies in muon spin relaxation of solid and hollow nanoparticles: a pathway to detect unusual local spin dynamics
By means of muon spin relaxation measurements we unraveled the temperature spin dynamics in monodisperse maghemite spherical nanoparticles with different surface to volume ratio, in two samples with a full core (diameter Dā¼4 and Dā¼5nm) and one with a hollow core (external diameter Dā¼7.4nm). The behavior of the muon longitudinal relaxation rates as a function of temperature allowed us to identify two distinct spin dynamics. The first is well witnessed by the presence of a characteristic peak for all the samples around the so-called muon blocking temperature T. A Bloembergen-Purcell-Pound (BPP)-like model reproduces the experimental data around the peak and at higher temperatures (20<T<100K) by assuming the NĆ©el reversal time of the magnetization as the dominating correlation time. An additional dynamic emerges in the samples with higher surface to volume ratio, namely, full 4 nm and hollow samples. This is witnessed by a shoulder of the main peak for T<20K at low longitudinal field (Ī¼Hā15mT), followed by an abrupt increase of the relaxation rate at T<10K, which is more evident for the hollow sample. These unusual anomalies of the longitudinal relaxation rate for T<T are suggested to be due to the surface spinsā dynamical behavior. Furthermore, for weak applied longitudinal magnetic field (Ī¼Hā15mT) and T<T we observed damped coherent oscillations of the muon asymmetry, which are a signature of a quasistatic local field at the muon site as probed by muons implanted in the inner magnetic core of the nanoparticles. The muon spin relaxation technique turns out to be very successful to study the magnetic behavior of maghemite nanoparticles and to detect their unusual local spin dynamics in low magnetic field conditions
- ā¦