423 research outputs found
Adaptive Randomized Distributed Space-Time Coding in Cooperative MIMO Relay Systems
An adaptive randomized distributed space-time coding (DSTC) scheme and
algorithms are proposed for two-hop cooperative MIMO networks. Linear minimum
mean square error (MMSE) receivers and an amplify-and-forward (AF) cooperation
strategy are considered. In the proposed DSTC scheme, a randomized matrix
obtained by a feedback channel is employed to transform the space-time coded
matrix at the relay node. Linear MMSE expressions are devised to compute the
parameters of the adaptive randomized matrix and the linear receive filter. A
stochastic gradient algorithm is also developed to compute the parameters of
the adaptive randomized matrix with reduced computational complexity. We also
derive the upper bound of the error probability of a cooperative MIMO system
employing the randomized space-time coding scheme first. The simulation results
show that the proposed algorithms obtain significant performance gains as
compared to existing DSTC schemes.Comment: 4 figure
Distributed Space-Time Coding Based on Adjustable Code Matrices for Cooperative MIMO Relaying Systems
An adaptive distributed space-time coding (DSTC) scheme is proposed for
two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE)
receive filters and adjustable code matrices are considered subject to a power
constraint with an amplify-and-forward (AF) cooperation strategy. In the
proposed adaptive DSTC scheme, an adjustable code matrix obtained by a feedback
channel is employed to transform the space-time coded matrix at the relay node.
The effects of the limited feedback and the feedback errors are assessed.
Linear MMSE expressions are devised to compute the parameters of the adjustable
code matrix and the linear receive filters. Stochastic gradient (SG) and
least-squares (LS) algorithms are also developed with reduced computational
complexity. An upper bound on the pairwise error probability analysis is
derived and indicates the advantage of employing the adjustable code matrices
at the relay nodes. An alternative optimization algorithm for the adaptive DSTC
scheme is also derived in order to eliminate the need for the feedback. The
algorithm provides a fully distributed scheme for the adaptive DSTC at the
relay node based on the minimization of the error probability. Simulation
results show that the proposed algorithms obtain significant performance gains
as compared to existing DSTC schemes.Comment: 6 figure
- …