15 research outputs found

    An improved genetic-fuzzy system for classification and data analysis

    No full text
    Interpretability of classification systems, which refers to the ability of these systems to express their behavior in an understandable way, has recently gained more attention and it is considered as an important requirement especially for knowledge-based systems. The main objective of this study is to improve the ability of a well-known fuzzy classifier proposed in Ishibuchi and Nojima (2007) to maximize the accuracy while preserve its interpretability. To achieve the above-mentioned objective, we propose two variants of the original fuzzy classifier. In the first variant classifier, the same components of the original classifier were used except NSGA-II which was replaced by an enhanced version called Controlled Elitism NSGA-II. This replacement aims at improving the ability of the first variant classifier to find non-dominated solutions with better interpretability-accuracy trade-off. In the second variant classifier, we further improve the first variant classifier by enhancing the selection method of the antecedent conditions of the rules generated in the initial population of genetic algorithm. Unlike the method applied in the original classifier and the first variant classifier, which uses a random selection of the antecedent conditions, we proposed a feature-based selection method to favor the antecedent conditions associated with the most relevant features. The results show that the two variant classifiers find more non-dominated fuzzy rule-based systems with better generalization ability than the original method which suggests that Controlled Elitism NSGA-II algorithm is more efficient than NSGA-II. In addition, feature-based selection method applied in the second variant classifier allowed this method to successfully obtain high-quality solutions as it has consistently achieved the best error rates for all the data sets compared to the original method and the first variant classifier

    AMI screening using linguistic fuzzy rules

    No full text
    This paper aims at identifying the factors that would help to diagnose acute myocardial infarction (AMI) using data from an electronic medical record system (EMR) and then generating structure decisions in the form of linguistic fuzzy rules to help predict and understand the outcome of the diagnosis. Since there is a tradeoff in the fuzzy system between the accuracy which measures the capability of the system to predict the diagnosis of AMI and transparency which reflects its ability to describe the symptoms-diagnosis relation in an understandable way, the proposed fuzzy rules are designed in a such a way to find an appropriate balance between these two conflicting modeling objectives using multi-objective genetic algorithms. The main advantage of the generated linguistic fuzzy rules is their ability to describe the relation between the symptoms and the outcome of the diagnosis in an understandable way, close to human thinking and this feature may help doctors to understand the decision process of the fuzzy rules

    Credit scoring models using soft computing methods: A survey

    No full text
    During the last fifteen years, soft computing methods have been successfully applied in building powerful and flexible credit scoring models and have been suggested to be a possible alternative to statistical methods. In this survey, the main soft computing methods applied in credit scoring models are presented and the advantages as well as the limitations of each method are outlined. The main modelling issues are discussed especially from the data mining point of view. The study concludes with a series of suggestions of other methods to be investigated for credit scoring modelling

    Design of a fuzzy-based decision support system for coronary heart disease diagnosis

    No full text
    In the present paper, a fuzzy rule-based system (FRBS) is designed to serve as a decision support system for Coronary heart disease (CHD) diagnosis that not only considers the decision accuracy of the rules but also their transparency at the same time. To achieve the two above mentioned objectives, we apply a multi-objective genetic algorithm to optimize both the accuracy and transparency of the FRBS. In addition and to help assess the certainty and the importance of each rule by the physician, an extended format of fuzzy rules that incorporates the degree of decision certainty and importance or support of each rule at the consequent part of the rules is introduced. Furthermore, a new way for employing Ensemble Classifiers Strategy (ECS) method is proposed to enhance the classification ability of the FRBS. The results show that the generated rules are humanly understandable while their accuracy compared favorably with other benchmark classification methods. In addition, the produced FRBS is able to identify the uncertainty cases so that the physician can give a special consideration to deal with them and this will result in a better management of efforts and tasks. Furthermore, employing ECS has specifically improved the ability of FRBS to detect patients with CHD which is desirable feature for any CHD diagnosis system
    corecore