8 research outputs found

    Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers

    Full text link
    We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three spatial dimensions. A ground state phase diagram is obtained depending on the interaction strength U and electronic density n. We find a first order phase transition between ferromagnetic regions where the spin is maximally polarized (Nagaoka ferromagnetism) and regions with smaller magnetization (weak ferromagnetism). When taking into account the possibility of spiral states, we find that the lowest critical U is obtained for an ordering momentum different from zero. The evolution of the ordering momentum with doping is discussed. The magnetic excitations (spin waves) in the antiferromagnetic insulating phase are calculated from the random-phase-approximation for the spin susceptibility. We also compute the spin fluctuation correction to the mean field magnetization by virtual emission/absorpion of spin waves. In the large UU limit, the renormalized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet, although the latter approach produces a larger renormalization

    Correlation and Dimerization Effects on the Physical Behavior of the NR4[Ni(dmit)2]2NR_4 [Ni(dmit)_2]_2 Charge Transfer Salts : A DMRG Study of the Quarter-Filling t-J Model

    Full text link
    The present work studies the quasi one-dimensional Ni(dmit)2Ni(dmit)_2-based compounds within a correlated model. More specifically, we focus our attention on the composed influence of the electronic dimerization-factor and the repulsion, on the transport properties and the localization of the electronic density in the ground-state. Those properties are studied through the computation of the charge gaps (difference between the ionization potential and the electro-affinity: IP-EA) and the long- and short-bond orders of an infinite quarter-filled chain within a t−J(t,U)t-J(t,U) model. The comparison between the computed gaps and the experimental activation energy of the semiconductor NH2Me2[Ni(dmit)2]2NH_2Me_2 [Ni(dmit)_2]_2 allows us to estimate the on-site electronic repulsion of the Ni(dmit)2Ni(dmit)_2 molecule to 1.16eV1.16eV.Comment: 13 pages, 4 figures, RevTe

    -I Institute ofPhysical Chemistry, 103064, Moscow, K 64, -ul Ob. ukha

    No full text
    A model explaining the nature of ferromagnetic exchange in organometallic charge-transfer molecular stacks is presented. It arises because of both the weak delocalization of unpaired electrons occupying the acceptor sites and the ferromagnetic exchange interaction between slightly delocalized acceptor electrons and perfectly localized ones in the d orbitals of the donor sites. It is shown that both the ground state of the system and the low-energy excitations can be described (in line with Anderson s theory of exchange in insulators) with use of a one-dimensional Heisenberg spin Hamiltonian with ferromagnetic nearest-neighbor interactions. Theoretical estimates of the effective exchange parameter of the Heisenberg Hamiltonian agree with those obtained from experimental data on magnetic susceptibility and speci6c heat
    corecore