545 research outputs found

    Thermal neutrinos from pre-supernova

    Get PDF
    We would like to discuss prospects for neutrino observations of the core-collapse supernova progenitor during neutrino-cooled stage. We will present new theoretical results on thermal neutrino and antineutrino spectra produced deep inside the pre-supernova core. Three competing processes: pair-, photo and plasma-neutrino production, are taken into account. The results will be used to estimate signal in existing and future neutrino detectors. Chance for supernova prediction is estimated, with possible aid to core-collapse neutrino and gravitational wave detectors in the form of early warning.Comment: 1 page, Contribution to the Proceedings of Neutrino 2006 Conferenc

    Shell model study of the pairing correlations

    Full text link
    A systematic study of the pairing correlations as a function of temperature and angular momentum has been performed in the sd-shell region using the spherical shell model approach. The pairing correlations have been derived for even-even, even-odd and odd-odd systems near N=Z and also for the asymmetric case of N=Z+4. The results indicate that the pairing content and the behavior of pair correlations is similar in even-even and odd-mass nuclei. For odd-odd N=Z system, angular momentum I=0 state is an isospin, t=1 neutron-proton paired configuration. Further, these t=1 correlations are shown to be dramatically reduced for the asymmetric case of N=Z+4. The shell model results obtained are qualitatively explained within a simplified degenerate model

    Equation of state for β\beta-stable hot nuclear matter

    Full text link
    We provide an equation of state for hot nuclear matter in β\beta-equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of proton and lepton fractions and afterwards of internal energy, free energy, pressure and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assesed and analyzed in the framework of the proposed effective interaction model. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 28 pages, 18 figure

    Equation of state for dense supernova matter

    Full text link
    We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of the lepton fractions and afterwards the evaluation of internal energy, pressure, entropy and in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy we also present the thermodynamic properties for isentropic case. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 23 pages, 15 figure
    corecore