1,108 research outputs found

    Near-Ultraviolet and Visible Spectroscopy of HAYABUSA Spacecraft Re-entry

    Full text link
    HAYABUSA is the first spacecraft ever to land on and lift off from any celestial body other than the moon. The mission, which returned asteroid samples to the Earth while overcoming various technical hurdles, ended on June 13, 2010, with the planned atmospheric re-entry. In order to safely deliver the sample return capsule, the HAYABUSA spacecraft ended its 7-year journey in a brilliant "artificial fireball" over the Australian desert. Spectroscopic observation was carried out in the near-ultraviolet and visible wavelengths between 3000 and 7500 \AA at 3 - 20 \AA resolution. Approximately 100 atomic lines such as Fe I, Mg I, Na I, Al I, Cr I, Mn I, Ni I, Ti I, Li I, Zn I, O I, and N I were identified from the spacecraft. Exotic atoms such as Cu I, Mo I, Xe I and Hg I were also detected. A strong Li I line (6708 \AA) at a height of ~55 km originated from the onboard Li-Ion batteries. The FeO molecule bands at a height of ~63 km were probably formed in the wake of the spacecraft. The effective excitation temperature as determined from the atomic lines varied from 4500 K to 6000 K. The observed number density of Fe I was about 10 times more abundant than Mg I after the spacecraft explosion. N2+(1-) bands from a shock layer and CN violet bands from the sample return capsule's ablating heat shield were dominant molecular bands in the near-ultraviolet region of 3000 - 4000 \AA. OH(A-X) band was likely to exist around 3092 \AA. A strong shock layer from the HAYABUSA spacecraft was rapidly formed at heights between 93 km and 83 km, which was confirmed by detection of N2+(1-) bands with a vibration temperature of ~13000 K. Gray-body temperature of the capsule at a height of ~42 km was estimated to be ~2437 K which is matched to a theoretical prediction. The final message of the HAYABUSA spacecraft and its sample return capsule are discussed through our spectroscopy.Comment: Accepted for publication in PASJ, 22 pages, 7 figures, 6 table

    The B Lymphocyte Adaptor Molecule of 32 kD (Bam32) Regulates B Cell Antigen Receptor Signaling and Cell Survival

    Get PDF
    The B lymphocyte–associated adaptor protein 32 kD in size (Bam32) is expressed at high levels in germinal center (GC) B cells. It has an NH2-terminal src homology 2 (SH2) domain which binds phospholipase C (PLC)γ2, and a COOH-terminal pleckstrin homology (PH) domain. Thus, Bam32 may function to integrate protein tyrosine kinase (PTK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways in B cells. To further define the role Bam32 plays in B cells, we generated Bam32-deficient DT40 cells. These Bam32−/− cells exhibited lower levels of B cell antigen receptor (BCR)-induced calcium mobilization with modest decreases in tyrosine phosphorylation of phospholipase C (PLC)γ2. Moreover, BCR-induced activation of extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways was impaired in Bam32−/− cells but not the activation of Akt-related pathways. Activation of downstream transcription factors such as nuclear factor of activated T cells (NF-AT) and nuclear factor of κ binding (NF-κB) was also impaired in Bam32−/− cells. Furthermore, Bam32−/− cells were more susceptible to BCR-induced death. Taken together, these findings suggest that Bam32 functions to regulate BCR-induced signaling and cell survival most likely in germinal centers

    High-precision molecular dynamics simulation of UO2-PuO2: superionic transition in uranium dioxide

    Full text link
    Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the rigid ions approximation using high-performance graphics processors (GPU). In this article we assess the 10 most relevant interatomic sets of pair potential (SPP) by reproduction of the Bredig superionic phase transition (anion sublattice premelting) in uranium dioxide. The measurements carried out in a wide temperature range from 300K up to melting point with 1K accuracy allowed reliable detection of this phase transition with each SPP. The {\lambda}-peaks obtained are smoother and wider than it was assumed previously. In addition, for the first time a pressure dependence of the {\lambda}-peak characteristics was measured, in a range from -5 GPa to 5 GPa its amplitudes had parabolic plot and temperatures had linear (that is similar to the Clausius-Clapeyron equation for melting temperature).Comment: 7 pages, 6 figures, 1 tabl

    Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice

    Get PDF
    A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics. Very recently, it has been reported that a model of graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin liquid ground state in a wide region of the phase diagram, between a semi-metal (SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically exact quantum Monte Carlo simulations, we extend the previous study to much larger clusters (containing up to 2592 sites), and find, if any, a very weak evidence of this spin liquid region. Instead, our calculations strongly indicate a direct and continuous quantum phase transition between SM and AFMI.Comment: 15 pages with 7 figures and 9 tables including supplementary information, accepted for publication in Scientific Report

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure
    • …
    corecore