307 research outputs found

    Induction of interferon alpha from human lymphocytes by autologous, dengue virus-infected monocytes

    Get PDF
    Human monocytes actively replicate dengue virus. To dissect the primary immune responses to dengue virus-infected monocytes (DV-monocytes), we analyzed the interaction between autologous DV-monocytes and the peripheral blood lymphocytes (PBL) of dengue nonimmune donors. Interferon (IFN) activity was detected when PBL were cultured with DV-monocytes. Cell contact between PBL and DV-monocytes was required for IFN production; however, MHC compatibility between PBL and monocytes was not necessary. DV-monocytes fixed with paraformaldehyde or glutaraldehyde, which produced no infectious virus, also induced high levels of IFN from PBL. The ability of DV-monocytes to induce IFN correlated with the appearance of dengue antigens. The PBL that produce IFN were characterized by FACS sorting using monoclonal and polyclonal antibodies. HLA-DR+ and T3- cells produced high titers of IFN, while HLA-DR- and T3+ cells produced very low or undetectable levels of IFN. Moderate titers of IFN were produced by cells contained in B cell fractions (surface immunoglobulin-positive, B1+, and Leu-12+), and cells contained in natural killer cell fractions (Leu-11+ and OKM1+). Therefore, IFN-producing cells are heterogeneous, and the predominant producer cells are characterized as HLA-DR+ and non-T lymphocytes. The IFN produced was characterized by RIA using mAbs to IFN-alpha and IFN-gamma. The IFN-alpha was the predominant IFN produced; in addition, a low level of IFN-gamma was also detected in some experiments. The culture fluids obtained from PBL exposed to autologous DV-monocytes, which contained high IFN activity, completely inhibited dengue virus infection of monocytes. These results suggest that IFN-alpha produced by PBL exposed to DV-monocytes may play an important role in controlling primary dengue virus infection

    Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity

    Get PDF
    The severe complications of dengue virus infections, hemorrhagic manifestation and shock, are much more commonly observed during secondary infections caused by a different serotype of dengue virus than that which caused the primary infections. It has been speculated, therefore, that dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are caused by serotype crossreactive immunopathological mechanisms. We analyzed clones of dengue serotype crossreactive T lymphocytes derived from the PBMC of a donor who had been infected with dengue 3 virus. These PBMC responded best to dengue 3 antigen, but also responded to dengue 1, 2, and 4 antigens, in bulk culture proliferation assays. 12 dengue antigen-specific clones were established using a limiting dilution technique. All of the clones had CD3+ CD4+ CD8 phenotypes. Eight clones responded to dengue 1, 2, 3, and 4 antigens and are crossreactive, while four other clones responded predominantly to dengue 3 antigen. These results indicate that the serotype crossreactive dengue-specific T lymphocyte proliferation observed in bulk cultures reflects the crossreactive responses detected at the clonal level. Serotype crossreactive clones produced high titers of IFN-gamma after stimulation with dengue 3 antigens, and also produced IFN-gamma to lower levels after stimulation with dengue 1, 2, and 4 antigens. The crossreactive clones lysed autologous lymphoblastoid cell line (LCL) pulsed with dengue antigens, and the crossreactivity of CTL lysis by T cell clones was consistent with the crossreactivity observed in proliferation assays. Epidemiological studies have shown that secondary infections with dengue 2 virus cause DHF/DSS at a higher rate than the other serotypes. We hypothesized that the lysis of dengue virus-infected cells by CTL may lead to DHF/DSS; therefore, the clones were examined for cytotoxic activity against dengue 2 virus-infected LCL. All but one of the serotype crossreactive clones lysed dengue 2 virus-infected autologous LCL, and they did not lyse uninfected autologous LCL. The lysis of dengue antigen-pulsed or virus-infected LCL by the crossreactive CTL clones that we have examined is restricted by HLA DP or DQ antigens. These results indicate that primary dengue virus infections induce predominantly crossreactive memory CD4+ T lymphocytes. These crossreactive T lymphocytes proliferate and produce IFN-gamma after stimulation with a virus strain of another serotype, and demonstrate crossreactive cyotoxic activity against autologous cells infected with heterologous dengue viruses.(ABSTRACT TRUNCATED AT 400 WORDS

    Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells

    Get PDF
    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexes after rIFN-gamma treatment. Pretreatment of U937 cells with rIFN-gamma resulted in a significant increase in the number of dengue virus-infected cells and in the yield of infectious virus. rIFN-gamma did not augment dengue virus infection when cells were infected with virus in the absence of anti-dengue antibodies. Gamma interferon (IFN-gamma) produced by peripheral blood lymphocytes from dengue-immune donors after in vitro stimulation with dengue antigens also augmented dengue virus infection of U937 cells. IFN-gamma did not augment dengue virus infections when cells were infected with virus in the presence of F(ab\u27)2 prepared from anti-dengue immunoglobulin G. Human immunoglobulin inhibited IFN-gamma-induced augmentation. IFN-gamma increased the number of Fc gamma receptors on U937 cells. The increase in the percentage of dengue antigen-positive cells correlated with the increase in the number of Fc gamma receptors after rIFN-gamma treatment. These results indicate that IFN-gamma-induced augmentation of dengue virus infection is Fc gamma receptor mediated. Based on these results we conclude that IFN-gamma increases the number of Fc gamma receptors and that this leads to an augmented uptake of dengue virus in the form of dengue virus-antibody complexes, which results in augmented dengue virus infection

    Japanese encephalitis virus-specific proliferative responses of human peripheral blood T lymphocytes

    Get PDF
    The T lymphocytes play an important role in prevention and recovery from viral infections. To characterize T lymphocyte responses to Japanese encephalitis (JE) virus infections, we analyzed JE virus-specific T lymphocytes in peripheral blood mononuclear cells (PBMC) obtained from seven JE patients and 10 vaccinees who had received a formalin-inactivated, purified JE virus vaccine (Biken vaccine). These PBMC were examined for proliferative responses against live JE virus, a glutaraldehyde-fixed lysate of cells infected with JE virus, and extracellular particles (EPs; subviral membrane vesicles released from cells infected with recombinant vaccinia viruses encoding the JE virus premembrane and envelope proteins). Japanese encephalitis virus-specific T cell proliferation was demonstrated with PBMC from both patients and vaccinees after stimulation with infectious JE virus or the lysate of JE virus-infected cells. Proliferating PBMC included CD4+ T lymphocytes and CD8+ T lymphocytes in responses to either form of JE viral antigens. Responses to EPs were observed only with PBMC from some American vaccinees whose PBMC also responded to the virus and lysate. These results indicate that JE virus infection and immunization with an inactivated JE vaccine induce JE virus-specific CD4+ and CD8+ T memory lymphocytes that can be induced to proliferate by infectious JE virus and noninfectious JE antigens

    High levels of interferon alpha in the sera of children with dengue virus infection

    Get PDF
    We measured the levels of interferon alpha (IFN alpha) in the sera of Thai children hospitalized with dengue hemorrhagic fever (DHF) or dengue fever (DF) to examine the role of IFN alpha in dengue virus infections of humans. The percentage of patients who had detectable levels of IFN alpha ( \u3e or = 3 U/ml) was higher in patients with DHF (80%, P \u3c 0.001) and in patients with DF (60%, P \u3c 0.001) than in healthy Thai children (7%). The levels of IFN alpha were higher in patients with DHF and in patients with DF on the first few days after the onset of fever than in healthy Thai children. The average levels of IFN alpha in patients with DHF were high two days before defervescence, decreasing gradually until the day of defervescence. There was a subset of patients with DHF who had increasing levels of IFN alpha after defervescence. However, the levels of IFN alpha in patients with DF were not high after fever subsided. The levels of IFN alpha were not different among children with DHF grades 1, 2 and 3. Among patients with DHF, T lymphocytes were activated to a higher degree in high IFN alpha producers than in low IFN alpha producers. These results indicate that similarly high levels of IFN alpha are produced in vivo during the acute stages of DHF and DF, and that high levels of IFN alpha remain after fever subsides in some patients with DHF, but not in patients with DF

    T-cell Responses to Dengue Virus in Humans

    Get PDF
    Dengue virus (DENV) is a leading cause of morbidity and mortality in most tropical and subtropical areas of the world. Dengue virus infection induces specific CD4+CD8– and CD8+CD4– T cells in humans. In primary infection, T-cell responses to DENV are serotype cross-reactive, but the highest response is to the serotype that caused the infection. The epitopes recognized by DENV-specific T cells are located in most of the structural and non-structural proteins, but NS3 is the protein that is most dominantly recognized. In patients with dengue hemorrhagic fever (DHF) caused by secondary DENV infection, T cells are highly activated in vivo. These highly activated T cells are DENV-specific and oligoclonal. Multiple kinds of lymphokines are produced by the activated T cells, and it has been hypothesized that these lymphokines are responsible for induction of plasma leakage, one of the most characteristic features of DHF. Thus, T-cells play important roles in the pathogenesis of DHF and in the recovery from DENV infection

    A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities

    Get PDF
    It is generally accepted that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize nine-amino acid peptides in conjunction with HLA class I molecules. We recently reported that dengue virus-specific CD8+ CTLs of two different serotype specificities, which were established by stimulation with dengue virus, recognize a single nine-amino acid peptide of the nonstructural protein NS3 of dengue virus type 4 (D4V) in an HLA-B35-restricted fashion. To further analyze the relationships between the serotype specificities of T cells and the amino acid sequence of the recognized peptides, we examined the ability of this viral peptide D4.NS3.500-508 (TPEGIIPTL) to stimulate T lymphocytes of an HLA-B35-positive, dengue virus type 4-immune donor. Peptide stimulation of the PBMC generated dengue virus-specific, HLA-B-35-restricted CD8+ CTL clones. These clones lysed dengue virus-infected autologous cells, as well as autologous target cells pulsed with this peptide. Four patterns of dengue virus serotype specificities were demonstrated on target cells infected with dengue-vaccinia recombinant viruses or pulsed with synthetic peptides corresponding to amino acid sequences of four dengue virus serotypes. Two serotype-specific clones recognized only D4V. Three dengue virus subcomplex-specific clones recognized D1V, D3V, and D4V, and one subcomplex-specific clone recognized D2V and D4V. Three dengue virus serotype-cross-reactive clones recognized D1V-D4V. Thus, a single nine-amino acid peptide induces proliferation of a heterogeneous panel of dengue virus-specific CD8+ CTL clones that are all restricted by HLA-B35 but have a variety of serotype specificities. Peptides that contain a single amino acid substitution at each position of D4.NS3.500-508 were recognized differently by the T cell clones. These results indicate that a single epitope can be recognized by multiple CD8+ CTLs that have a variety of serotype specificities, but the manner of recognition by these multiple CTLs is heterogeneous

    T cell receptor Vbeta gene usage in Thai children with dengue virus infection

    Get PDF
    T lymphocyte activation during dengue is thought to contribute to the pathogenesis of dengue hemorrhagic fever (DHF). We examined the T cell receptor Vbeta gene usage by a reverse transcriptase-polymerase chain reaction assay during infection and after recovery in 13 children with DHF and 13 children with dengue fever (DF). There was no deletion of specific Vbeta gene families. We detected significant expansions in usage of single Vbeta families in six subjects with DHF and three subjects with DF over the course of infection, but these did not show an association with clinical diagnosis, viral serotype, or HLA alleles. Differences in Vbeta gene usage between subjects with DHF and subjects with DF were of borderline significance. These data suggest that the differences in T cell activation in DHF and DF are quantitative rather than qualitative and that T cells are activated by conventional antigen(s) and not a viral superantigen

    Characterization of a dengue type-specific epitope on dengue 3 virus envelope protein domain III

    Get PDF
    Dengue virus (DENV) is a mosquito-borne disease caused by four genetically and serologically related viruses termed DENV-1, -2, -3 and -4. The DENV envelope (E) protein ectodomain can be divided into three structural domains designated ED1, ED2 and ED3. The ED3 domain contains DENV type-specific and DENV complex-reactive antigenic sites. To date, nearly all antigenic studies on the E protein have focused on DENV-2. In this study, the epitope recognized by a DENV-3 type-specific monoclonal antibody (mAb 14A4-8) was mapped to the DENV-3 ED3 domain using a combination of physical and biological techniques. Epitope mapping revealed that amino acid residues V305, L306, K308, E309, V310, K325, A329, G381 and I387 were critical for the binding of mAb 14A4-8 and amino acid residues T303, K307, K386, W389 and R391 were peripheral residues for this epitope. The location of the mAb 14A4-8 epitope overlaps with the DENV complex-reactive antigenic site in the DENV-3 ED3 domain

    Rapid diagnosis of dengue viremia by reverse transcriptase-polymerase chain reaction using 3\u27-noncoding region universal primers

    Get PDF
    A reverse transcriptase-polymerase chain reaction (RT-PCR) method was developed as a rapid diagnostic test of dengue viremia. To detect dengue viruses in serum or plasma specimens, a pair of universal primers was designed for use in the RT-PCR. Using these primers, the 3\u27-noncoding region of dengue virus types 1, 2, 3, and 4 could be amplified, but not those of other flaviviruses, such as West Nile virus, Japanese encephalitis virus, and yellow fever virus, or the alphavirus Sindbis virus. The sensitivity of the RT-PCR assay was similar to that of a quantitative fluorescent focus assay of dengue viruses in cell culture. Combining a silica method for RNA isolation and RT-PCR dengue virus could be detected in a 6-hr assay. In a preliminary study using this method, we detected dengue virus in 38 of 39 plasma specimens from which dengue virus had been isolated by mosquito inoculation. We then applied this method for detecting dengue viremia to 117 plasma samples from 62 children with acute febrile illnesses in a dengue-endemic area. We detected dengue viremia in 19 of 20 samples obtained on the day of presentation, which had been confirmed as acute dengue infection by mosquito inoculation and antibody responses. The overall sensitivity of this method was 91.4% (32 of 35; 95% confidence interval [CI] = 82.2-100%). The results from testing plasma samples from febrile nondengue patients showed a specificity of 95.4% (42 of 44; 95% CI = 89.3-100%)
    • …
    corecore