13 research outputs found

    Search for a signal on intermediate baryon systems formation in hadron-nuclear and nuclear-nuclear interactions at high energies

    Full text link
    We have analyzed the behavior of different characteristics of hadron-nuclear and nuclear-nuclear interactions as a function of centrality to get a signal on the formation of intermediate baryon systems. We observed that the data demonstrate the regime change and saturation. The angular distributions of slow particles exhibit some structure in the above mentioned reactions at low energy. We believe that the structure could be connected with the formation and decay of the percolation cluster. With increasing the mass of colliding nuclei, the structure starts to become weak and almost disappears ultimately. This shows that the number of secondary internuclear interactions increases with increasing the mass of the colliding nuclei. The latter could be a reason of the disintegration of any intermediate formations as well as clusters, which decrease their influence on the angular distribution of the emitted particles.Comment: 2 pages and one figur

    Topology of "white" stars in relativistic fragmentation of light nuclei

    Get PDF
    In the present paper, experimental observations of the multifragmentation processes of light relativistic nuclei carried out by means of emulsions are reviewed. Events of the type of "white" stars in which the dissociation of relativistic nuclei is not accompanied by the production of mesons and the target-nucleus fragments are considered. A distinctive feature of the charge topology in the dissociation of the Ne, Mg, Si, and S nuclei is an almost total suppression of the binary splitting of nuclei to fragments with charges higher than 2. The growth of the nuclear fragmentation degree is revealed in an increase in the multiplicity of singly and doubly charged fragments with decreasing charge of the non-excited part of the fragmenting nucleus. The processes of dissociation of stable Li, Be, B, C, N, and O isotopes to charged fragments were used to study special features of the formation of systems consisting of the lightest α\alpha, d, and t nuclei. Clustering in form of the 3^3He nucleus can be detected in "white" stars via the dissociation of neutron-deficient Be, B, C, and N isotopes.Comment: 20 pages, 3 figures, 9 tables, conference: Conference on Physics of Fundamental Interactions, Moscow, Russia, 1-5 Mar 2004.(Author's translation
    corecore