473 research outputs found
Revision of the ionization energy of neutral carbon
This publication describes a re-analysis of previously published data on
neutral carbon (C I) utilizing critically examined and improved values for the
line energies of the absorption spectrum of molecular iodine to calibrate the
transition energies of C I absorption lines originating from the 1s22s22p3s
3P{\deg}2) level and terminating on highly excited Rydberg states of the
1s22s22pnp 3D3 series, which converges on the first excited fine-structure
level of the ionic ground configuration. Additional use of improved energy
values for the 1s22s22p3s 3P{\deg}2 level, the fine-structure interval of the
ionic ground state, and sophisticated modern fitting techniques lead to a new
value of the ionization energy of neutral carbon with 9 times the precision of
previous work, 90820.348(9) cm^{-1}, as well as a table of predicted values for
the energies of not yet observed states in the series.Comment: Journal of Physics Communications, 201
Atomic Spectroscopic Databases at NIST
We describe recent work at NIST to develop and maintain databases for spectra, transition probabilities, and energy levels of atoms that are astrophysically important. Our programs to critically compile these data as well as to develop a new database to compare plasma calculations for atoms that are not in local thermodynamic equilibrium are also summarized
Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients
Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne–Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Πand 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar–Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge–Sponer plots and various population analyses across the C+-RG series (RG = He–Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data
K-shell photoionization of ground-state Li-like boron ions [B]: Experiment and Theory
Absolute cross sections for the K-shell photoionization of ground-state
Li-like boron [B(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source synchrotron
radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the
[1s(2s\,2p)P]P and [1s(2s\,2p)P] P
resonances, respectively, were investigated using resolving powers of up to
17\,600. The energy range of the experiments was extended to about 238.2 eV
yielding energies of the most prominent
[1s(2\,n)]P resonances with an absolute accuracy
of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)P]
P and [1s(2s\,2p)P] P resonances were measured
to be meV and meV, respectively, which compare
favourably with theoretical results of 4.40 meV and 30.53 meV determined using
an intermediate coupling R-matrix method.Comment: 6 figures and 2 table
Production of Sodium Bose--Einstein condensates in an optical dimple trap
We report on the realization of a sodium Bose--Einstein condensate (BEC) in a
combined red-detuned optical dipole trap, formed by two beams crossing in a
horizontal plane and a third, tightly focused dimple trap propagating
vertically. We produce a BEC in three main steps: loading of the crossed dipole
trap from laser-cooled atoms, an intermediate evaporative cooling stage which
results in efficient loading of the auxiliary dimple trap, and a final
evaporative cooling stage in the dimple trap. Our protocol is implemented in a
compact setup and allows us to reach quantum degeneracy even with relatively
modest initial atom numbers and available laser power
- …