111 research outputs found
Circadian rhythms and sleep regulation in seasonal affective disorder
Seasonal affective disorder (SAD) is characterised by recurrent episodes in autumn and winter of depression, hypersomnia, augmented appetite with carbohydrate craving, and weight gain, and can be successfully treated with bright light. Circadian rhythm hypotheses (summarized in) have stimulated research into the pathophysiology of SAD, postulating that: 1.The illness is a consequence of delayed phase position, 2.It is correlated with diminished circadian amplitude, or 3.It results from changes in the nocturnal duration between dusk and dawn e.g. of low core body temperature or melatonin secretion. Light is considered to act directly on the circadian pacemaker (‘Process C') and not on sleep dependent processes (‘Process S'). Thus successful treatment of SAD must act via mechanisms within known retinohypothalamic pathways. Conversely, emergence of SAD symptoms may reflect inappropriate neurobiological response to decreasing daylengt
Wake Up and Talk with Me! In-the-Field Study of an Autonomous Interactive Wake Up Robot
12th International Conference, ICSR 2020, Golden, CO, USA, November 14–18, 2020In this paper, we present a robot that is designed to smoothly wake up a user in the morning. We created an autonomous interactive wake up robot that implements a wake up behavior that was selected through preliminary experiments. We conducted a user study to test the interactive robot and compared it to a baseline robot that behaves like a conventional alarm clock. We recruited 22 participants that agreed to bring the robot to their home and test it for two consecutive nights. The participants felt significantly less sleepy after waking up with the interactive robot, and reported significantly more intention to use the interactive robot
The Vigilance Decrement in Executive Function Is Attenuated When Individual Chronotypes Perform at Their Optimal Time of Day
Time of day modulates our cognitive functions, especially those related to executive control, such as the ability to inhibit inappropriate responses. However, the impact of individual differences in time of day preferences (i.e. morning vs. evening chronotype) had not been considered by most studies. It was also unclear whether the vigilance decrement (impaired performance with time on task) depends on both time of day and chronotype. In this study, morning-type and evening-type participants performed a task measuring vigilance and response inhibition (the Sustained Attention to Response Task, SART) in morning and evening sessions. The results showed that the vigilance decrement in inhibitory performance was accentuated at non-optimal as compared to optimal times of day. In the morning-type group, inhibition performance decreased linearly with time on task only in the evening session, whereas in the morning session it remained more accurate and stable over time. In contrast, inhibition performance in the evening-type group showed a linear vigilance decrement in the morning session, whereas in the evening session the vigilance decrement was attenuated, following a quadratic trend. Our findings imply that the negative effects of time on task in executive control can be prevented by scheduling cognitive tasks at the optimal time of day according to specific circadian profiles of individuals. Therefore, time of day and chronotype influences should be considered in research and clinical studies as well as real-word situations demanding executive control for response inhibition.This work was supported by the Spanish Ministerio de Ciencia e Innovación (Ramón y Cajal programme: RYC-2007-00296 and PLAN NACIONAL de I+D+i: PSI2010-15399) and Junta de Andalucía (SEJ-3054)
Sleep, vigilance, and thermosensitivity
The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs
A New Integrated Variable Based on Thermometry, Actimetry and Body Position (TAP) to Evaluate Circadian System Status in Humans
The disruption of the circadian system in humans has been associated with the development of chronic illnesses and the worsening of pre-existing pathologies. Therefore, the assessment of human circadian system function under free living conditions using non-invasive techniques needs further research. Traditionally, overt rhythms such as activity and body temperature have been analyzed separately; however, a comprehensive index could reduce individual recording artifacts. Thus, a new variable (TAP), based on the integrated analysis of three simultaneous recordings: skin wrist temperature (T), motor activity (A) and body position (P) has been developed. Furthermore, we also tested the reliability of a single numerical index, the Circadian Function Index (CFI), to determine the circadian robustness. An actimeter and a temperature sensor were placed on the arm and wrist of the non-dominant hand, respectively, of 49 healthy young volunteers for a period of one week. T, A and P values were normalized for each subject. A non-parametric analysis was applied to both TAP and the separate variables to calculate their interdaily stability, intradaily variability and relative amplitude, and these values were then used for the CFI calculation. Modeling analyses were performed in order to determine TAP and CFI reliability. Each variable (T, A, P or TAP) was independently correlated with rest-activity logs kept by the volunteers. The highest correlation (r = −0.993, p<0.0001), along with highest specificity (0.870), sensitivity (0.740) and accuracy (0.904), were obtained when rest-activity records were compared to TAP. Furthermore, the CFI proved to be very sensitive to changes in circadian robustness. Our results demonstrate that the integrated TAP variable and the CFI calculation are powerful methods to assess circadian system status, improving sensitivity, specificity and accuracy in differentiating activity from rest over the analysis of wrist temperature, body position or activity alone
Daytime melatonin and temazepam in young adult humans: equivalent effects on sleep latency and body temperatures
As changes in core body temperature are generally associated with concomitant changes in sleep propensity, it is possible that the effects of hypnotic/soporific agents may be related to changes in thermoregulation. Therefore, to increase our knowledge of the mechanisms by which these agents exert their soporific effects, we compared the thermoregulatory and soporific effects of temazepam (20 mg per os (p.o.)) with those of melatonin (5 mg p.o.) when administered at 14.00 h to 20 young healthy adults (13 male, 7 female; age, 23·5 ± 0·4 years).From 08.00 to 20.30 h, subjects lay in bed, and foot and rectal (Tc) temperatures were recorded. Sleep onset latency (SOL) was measured using 20 min multiple sleep latency tests, performed hourly from 11.00 to 20.00 h, during which time heart rate was recorded.Compared with placebo, both melatonin and temazepam significantly reduced Tc (-0·17 ± 0·02 and -0·15 ± 0·03 °C, respectively) and SOL (by 4·8 ± 1·49 and 6·5 ± 1·62 min, respectively). Although both treatments significantly increased heat loss, only melatonin demonstrated cardiac effects. Importantly, there was a temporal relationship between minimum SOL and the maximum rate of decline in Tc for both melatonin (r = 0·48) and temazepam (r = 0·44).A possible role of thermoregulation in sleep initiation is suggested by the similar temporal relationship between Tc and SOL for two different classes of soporific agents
- …