154 research outputs found

    Large-amplitude electron-acoustic solitons in a dusty plasma with kappa-distributed electrons

    Full text link
    The Sagdeev pseudopotential method is used to investigate the occurrence and the dynamics of fully nonlinear electrostatic solitary structures in a plasma containing suprathermal hot electrons, in the presence of massive charged dust particles in the background. The soliton existence domain is delineated, and its parametric dependence on different physical parameters is clarified.Comment: 3 pages, 1 figure, presented as a poster at the 6th International Conference on the Physics of Dusty Plasmas (ICPDP6), Garmisch-Partenkirchen, Germany, 201

    Oblique amplitude modulation of dust-acoustic plasma waves

    Full text link
    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on the angle θ\theta between the modulation and propagation directions. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations have also been discussed.Comment: 21 pages, 6 figures, to appear in Physica Script

    Random walk of magnetic field lines for different values of the energy-range spectral index

    Full text link
    An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently [A. Shalchi, I. Kourakis, Astronomy and Astrophysics, 470, 405 (2007)]. In this article we investigate the influence of the wave-spectrum in the energy-range onto field line random walk by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behaviour of the field-lines. If the energy-range spectral index exceeds unity a free-streaming behaviour of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field line wandering.Comment: Submitted to Physics of Plasmas; 13 pages, no figure

    Discrete Breathers in Hexagonal Dusty Plasma Lattices

    Full text link
    The occurrence of single- or multisite localized vibrational modes, also called Discrete Breathers (DBs), in 2D hexagonal dusty plasma (DP) lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter \e in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single- as well as three-site DBs in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a DP lattice can support single site DBs while three-site in phase breathers could exist if specific conditions, about the inter-grain interaction strength, would hold. On the other hand, out of phase and vortex three site breathers cannot be supported since they are highly unstable

    Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

    Full text link
    The linear and nonlinear properties of large amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modelled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential type analysis reveals the existence of large amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely, the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field are discussed.Comment: Submitted to Plasma Physics and Controlled Fusio

    Discrete solitons and vortices in hexagonal and honeycomb lattices: Existence, stability, and dynamics

    Full text link
    We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schroedinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the hexapole of alternating phases, as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao
    • …
    corecore