11 research outputs found

    Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ МБКВ-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ клиничСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ острых Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΡ… ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ кровообращСния

    Get PDF
    Background The use of neuroimaging methods is an integral part of the process of assisting patients with acute cerebrovascular events (ACVE), and computed tomography (CT) is the Β«gold standardΒ» for examining this category of patients. The capabilities of the analysis of CT images may be significantly expanded with modern methods of machine learning including the application of the principles of radiomics. However, since the use of these methods requires large arrays of DICOM (Digital Imaging and Communications in Medicine)-images, their implementation into clinical practice is limited by the lack of representative sample sets. Inaddition, at present, collections (datasets) of CT images of stroke patients, that are suitable for machine learning, are practically not available in the public domain.Aim of study Regarding the aforesaid, the aim of this work was to create a DICOM images dataset of native CT and CT-angiography of patients with different types of stroke. Material and meth ods The collection was based on the medical cases of patients hospitalized in the Regional Vascular Center of the N.V. Sklifosovsky Research Institute for Emergency Medicine. We used a previously developed specialized platform to enter clinical data on the stroke cases, to attach CT DICOMimages to each case, to contour 3D areas of interest, and to tag (label) them. A dictionary was developed for tagging, where elements describe the type of lesion, location, and vascular territory.Results A dataset of clinical cases and images was formed in the course of the work. It included anonymous information about 220 patients, 130 of them with ischemic stroke, 40 with hemorrhagic stroke, and 50 patients without cerebrovascular disorders. Clinical data included information about type of stroke, presence of concomitant diseases and complications, length of hospital stay, methods of treatment, and outcome. The results of 370 studies of native CT and 102 studies of CT-angiography were entered for all patients. The areas of interest corresponding to direct and indirect signs of stroke were contoured and tagged by radiologists on each series of images.Conclusion The resulting collection of images will enable the use of various methods of data analysis and machine learning in solving the most important practical problems including diagnosis of the stroke type, assessment of lesion volume, and prediction of the degree of neurological deficit.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π½Π΅ΠΉΡ€ΠΎΠ²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ являСтся Π½Π΅ΠΎΡ‚ΡŠΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ процСсса оказания ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ с острыми Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ кровообращСния (ОНМК), ΠΏΡ€ΠΈ этом Π·ΠΎΠ»ΠΎΡ‚Ρ‹ΠΌ стандартом обслСдования Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… являСтся ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ томография (КВ). Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ возмоТности Π°Π½Π°Π»ΠΈΠ·Π° КВ-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ соврСмСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² машинного обучСния, Π² Ρ‚ΠΎΠΌ числС Π½Π° основС примСнСния ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² Ρ€Π°Π΄ΠΈΠΎΠΌΠΈΠΊΠΈ. Однако, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ использованиС этих ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ наличия Π±ΠΎΠ»ΡŒΡˆΠΈΡ… массивов DICOM (Digital Imaging and Communications in Medicine)-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΈΡ… Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π½Π°Π±ΠΎΡ€Π° Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π²Ρ‹Π±ΠΎΡ€ΠΎΠΊ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² настоящСС врСмя Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС практичСски Π½Π΅ прСдставлСны ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ, содСрТащиС КВ-изобраТСния Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… c ОНМК, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Π±Ρ‹ ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹ для машинного обучСния.ЦСль Π’ связи с Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌ, Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось созданиС ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ DICOM-ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ КВ ΠΈ КВ-Π°Π½Π³ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ ОНМК.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Основой для создания ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ стали истории Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², госпитализированных Π² Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ сосудистый Ρ†Π΅Π½Ρ‚Ρ€ НИИ БП ΠΈΠΌ. Н.Π’. Бклифосовского. Для формирования ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ использовалась разработанная Π½Π°ΠΌΠΈ Ρ€Π°Π½Π΅Π΅ спСциализированная ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ клиничСскиС Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ случаях ОНМК, ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»ΡΡ‚ΡŒ ΠΊ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΡΠ»ΡƒΡ‡Π°ΡŽ DICOM-изобраТСния ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΈ Ρ‚Π΅Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ (Ρ€Π°Π·ΠΌΠ΅Ρ‡Π°Ρ‚ΡŒ) 3D-области интСрСса. Для тСгирования Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ, элСмСнты ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΈΠΏ патологичСского образования, Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ бассСйн кровоснабТСния.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π’ Ρ…ΠΎΠ΄Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»Π° сформирована коллСкция клиничСских случаСв ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Π°Π½ΠΎΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ 220 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°Ρ…, ΠΈΠ· Π½ΠΈΡ… 130 - с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ, 40 - с гСморрагичСским ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ 50 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π±Π΅Π· цСрСброваскулярной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ свСдСния ΠΎ Ρ‚ΠΈΠΏΠ΅ ОНМК, Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ ослоТнСний, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ госпитализации, способС лСчСния ΠΈ исходС. ВсСго для ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ Π²Π²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ 370 исслСдований Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ КВ ΠΈ 102 исслСдования КВ-Π°Π½Π³ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. На ΠΊΠ°ΠΆΠ΄ΠΎΠΉ сСрии ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π²Ρ€Π°Ρ‡ΠΎΠΌ-экспСртом Π±Ρ‹Π»ΠΈ ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π΅Π½Ρ‹ ΠΈ ΠΏΡ€ΠΎΡ‚Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ области интСрСса, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ прямым ΠΈ косвСнным ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ОНМК.Π’Ρ‹Π²ΠΎΠ΄ Бформированная коллСкция ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π² ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ машинного обучСния Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… практичСских Π·Π°Π΄Π°Ρ‡, Π² Ρ‚ΠΎΠΌ числС диагностики Ρ‚ΠΈΠΏΠ° ОНМК, ΠΎΡ†Π΅Π½ΠΊΠΈ объСма пораТСния, ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° стСпСни нСврологичСского Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π°

    An emg-operated control system for a prosthesis

    No full text

    List of lists-annotated (LOLA): A database for annotation and comparison of published microarray gene lists

    No full text
    Microarray profiling of RNA expression is a powerful tool that generates large lists of transcripts that are potentially relevant to a disease or treatment. However, because the lists of changed transcripts are embedded in figures and tables, they are typically inaccessible for search engines. Due to differences in gene nomenclatures, the lists are difficult to compare between studies. LOLA (Lists of Lists Annotated) is an internet-based database for comparing gene lists from microarray studies or other genomic-scale methods. It serves as a common platform to compare and reannotate heterogeneous gene lists from different microarray platforms or different genomic methodologies such as serial analysis of gene expression (SAGE) or proteomics. LOLA (www.lola.gwu.edu) provides researchers with a means to store, annotate, and compare gene lists produced from different studies or different analyses of the same study. It is especially useful in identifying potentially high interest genes which are reported as significant across multiple studies and species. Its application to the fields of stem cell, cancer, and aging research is demonstrated by comparing published papers. Β© 2005 Elsevier B.V. All rights reserved

    Creation of a Dataset of MSCT-Images and Clinical Data for Acute Cerebrovascular Events

    No full text
    Background The use of neuroimaging methods is an integral part of the process of assisting patients with acute cerebrovascular events (ACVE), and computed tomography (CT) is the Β«gold standardΒ» for examining this category of patients. The capabilities of the analysis of CT images may be significantly expanded with modern methods of machine learning including the application of the principles of radiomics. However, since the use of these methods requires large arrays of DICOM (Digital Imaging and Communications in Medicine)-images, their implementation into clinical practice is limited by the lack of representative sample sets. Inaddition, at present, collections (datasets) of CT images of stroke patients, that are suitable for machine learning, are practically not available in the public domain.Aim of study Regarding the aforesaid, the aim of this work was to create a DICOM images dataset of native CT and CT-angiography of patients with different types of stroke. Material and meth ods The collection was based on the medical cases of patients hospitalized in the Regional Vascular Center of the N.V. Sklifosovsky Research Institute for Emergency Medicine. We used a previously developed specialized platform to enter clinical data on the stroke cases, to attach CT DICOMimages to each case, to contour 3D areas of interest, and to tag (label) them. A dictionary was developed for tagging, where elements describe the type of lesion, location, and vascular territory.Results A dataset of clinical cases and images was formed in the course of the work. It included anonymous information about 220 patients, 130 of them with ischemic stroke, 40 with hemorrhagic stroke, and 50 patients without cerebrovascular disorders. Clinical data included information about type of stroke, presence of concomitant diseases and complications, length of hospital stay, methods of treatment, and outcome. The results of 370 studies of native CT and 102 studies of CT-angiography were entered for all patients. The areas of interest corresponding to direct and indirect signs of stroke were contoured and tagged by radiologists on each series of images.Conclusion The resulting collection of images will enable the use of various methods of data analysis and machine learning in solving the most important practical problems including diagnosis of the stroke type, assessment of lesion volume, and prediction of the degree of neurological deficit

    Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment

    No full text
    BACKGROUND: Prosthetic arm research predominantly focuses on "bionic" but not body-powered arms. However, any research orientation along user needs requires sufficiently precise workplace specifications and sufficiently hard testing. Forensic medicine is a demanding environment, also physically, also for non-disabled people, on several dimensions (e.g., distances, weights, size, temperature, time). METHODS: As unilateral below elbow amputee user, the first author is in a unique position to provide direct comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body-powered arm which contains a number of new developments initiated or developed by the user: (1) quick lock steel wrist unit; (2) cable mount modification; (3) cast shape modeled shoulder anchor; (4) suspension with a soft double layer liner (Ohio Willowwood) and tube gauze (Molnlycke) combination. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) contains magnetic electrodes (Liberating Technologies). An on the job usage of five years was supplemented with dedicated and focused intensive two-week use tests at work for both systems. RESULTS: The side-by-side comparison showed that the customized body-powered arm provides reliable, comfortable, effective, powerful as well as subtle service with minimal maintenance; most notably, grip reliability, grip force regulation, grip performance, center of balance, component wear down, sweat/temperature independence and skin state are good whereas the iLimb system exhibited a number of relevant serious constraints. CONCLUSIONS: Research and development of functional prostheses may want to focus on body-powered technology as it already performs on manually demanding and heavy jobs whereas eliminating myoelectric technology's constraints seems out of reach. Relevant testing could be developed to help expediting this. This is relevant as Swiss disability insurance specifically supports prostheses that enable actual work integration. Myoelectric and cosmetic arm improvement may benefit from a less forgiving focus on perfecting anthropomorphic appearance
    corecore