1,165 research outputs found

    Universal behavior at discontinuous quantum phase transitions

    Full text link
    Discontinuous quantum phase transitions besides their general interest are clearly relevant to the study of heavy fermions and magnetic transition metal compounds. Recent results show that in many systems belonging to these classes of materials, the magnetic transition changes from second order to first order as they approach the quantum critical point (QCP). We investigate here some mechanisms that may be responsible for this change. Specifically the coupling of the order parameter to soft modes and the competition between different types of order near the QCP. For weak first order quantum phase transitions general results are obtained. In particular we describe the thermodynamic behavior at this transition when it is approached from finite temperatures. This is the discontinuous equivalent of the non-Fermi liquid trajectory close to a conventional QCP in a heavy fermion material.Comment: 7 pages, 3 figure

    Orbital degeneracy as a source of frustration in LiNiO2_2

    Full text link
    Motivated by the absence of cooperative Jahn-Teller effect and of magnetic ordering in LiNiO2_2, a layered oxide with triangular planes, we study a general spin-orbital model on the triangular lattice. A mean-field approach reveals the presence of several singlet phases between the SU(4) symmetric point and a ferromagnetic phase, a conclusion supported by exact diagonalizations of finite clusters. We argue that one of the phases, characterized by a large number of low-lying singlets associated to dimer coverings of the triangular lattice, could explain the properties of LiNiO2_2, while a ferro-orbital phase that lies nearby in parameter space leads to a new prediction for the magnetic properties of NaNiO2_2.Comment: 18 pages, 17 figure

    Emergent Phases of Nodeless and Nodal Superconductivity Separated by Antiferromagnetic Order in Iron-based Superconductor (Ca4Al2O6)Fe2(As1-xPx)2: 75As- and 31P-NMR Studies

    Full text link
    We report 31^{31}P- and 75^{75}As-NMR studies on (Ca4_4Al2_2O6_{6})Fe2_2(As1x_{1-x}Px_x)2_2 with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0x\le x \le0.4 and the nodal one around xx=1 are intimately separated by the onset of a commensurate stripe-type antiferromagnetic (AFM) order in 0.5x\le x \le 0.95, as an isovalent substitution of P for As decreases a pnictogen height hPnh_{Pn} measured from the Fe plane. It is demonstrated that the AFM order takes place under a condition of 1.32\AAhPn\le h_{Pn} \le1.42\AA, which is also the case for other Fe-pnictides with the Fe2+^{2+} state in (FePnPn)^{-} layers. This novel phase evolution with the variation in hPnh_{Pn} points to the importance of electron correlation for the emergence of SC as well as AFM order.Comment: 5pages, 4figures; accepted for publication as a Rapid Communication in Phys. Rev.

    High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

    Full text link
    We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let

    Realization of odd-frequency p-wave spin-singlet superconductivity coexisting with antiferromagnetic order near quantum critical point

    Full text link
    A possibility of the realization of the p-wave spin-singlet superconductivity (ppSS), whose gap function is odd both in momentum and in frequency, is investigated by solving the gap equation with the phenomenological interaction mediated by the antiferromagnetic spin fluctuation. The ppSS is realized prevailing over the d-wave singlet superconductivity (ddSS) in the vicinity of antiferromagnetic quantum critical pint (QCP) both on the paramagnetic and on the antiferromagnetic sides. Off the QCP in the paramagnetic phase, however, the ddSS with line-nodes is realized as \textit{conventional} anisotropic superconductivity. For the present ppSS state, there is no gap in the quasiparticle spectrum everywhere on the Fermi surface due to its odd frequency. These features can give a qualitative understanding of the anomalous behaviors of NQR relaxation rate on CeCu2_2Si2_2 or CeRhIn5_5 where the antiferromagnetism and superconductivity coexist on a microscopic level.Comment: 20 pages with 12 figures. To appear in J. Phys. Soc. Jpn. Vol. 72, No. 1

    Microscopic Evidence for Evolution of Superconductivity by Effective Carrier Doping in Boron-doped Diamond:11B-NMR study

    Full text link
    We have investigated the superconductivity discovered in boron (B)-doped diamonds by means of 11B-NMR on heteroepitaxially grown (111) and (100) films. 11B-NMR spectra for all of the films are identified to arise from the substitutional B(1) site as single occupation and lower symmetric B(2) site substituted as boron+hydrogen(B+H) complex, respectively. A clear evidence is presented that the effective carriers introduced by B(1) substitution are responsible for the superconductivity, whereas the charge neutral B(2) sites does not offer the carriers effectively. The result is also corroborated by the density of states deduced by 1/T1T measurement, indicating that the evolution of superconductivity is driven by the effective carrier introduced by substitution at B(1) site.Comment: 4 pages, 6 figures, to be published in Phys. Rev. B (Brief report

    Enhancement of Superconducting Transition Temperature due to the strong Antiferromagnetic Spin Fluctuations in Non-centrosymmetric Heavy-fermion Superconductor CeIrSi3 :A 29Si-NMR Study under Pressure

    Full text link
    We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the nuclear-spin lattice relaxation rate 1/T_1 below Tc exhibits a T^3 behavior without any coherence peak just below Tc, revealing the presence of line nodes in the SC gap. In the normal state, 1/T_1 follows a \sqrt{T}-like behavior, suggesting that the SC emerges under the non-Fermi liquid state dominated by AFM spin fluctuations enhanced around quantum critical point (QCP). The reason why the maximum Tc in CeIrSi3 is relatively high among the Ce-based heavy-fermion superconductors may be the existence of the strong AFM spin fluctuations. We discuss the comparison with the other Ce-based heavy-fermion superconductors.Comment: 4 pages, 5 figures, To be published in Phys. Rev. Let
    corecore