132 research outputs found

    Activation of the dopamine 1 and dopamine 5 receptors increase skeletal muscle mass and force production under non-atrophying and atrophying conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Control of skeletal muscle mass and force production is a complex physiological process involving numerous regulatory systems. Agents that increase skeletal muscle cAMP levels have been shown to modulate skeletal muscle mass and force production. The dopamine 1 receptor and its closely related homolog, the dopamine 5 receptor, are G-protein coupled receptors that are expressed in skeletal muscle and increase cAMP levels when activated. Thus we hypothesize that activation of the dopamine 1 and/or 5 receptor will increase skeletal muscle cAMP levels thereby modulating skeletal muscle mass and force production.</p> <p>Methods</p> <p>We treated isolated mouse tibialis anterior (TA) and medial gastrocnemius (MG) muscles in tissue bath with the selective dopamine 1 receptor and dopamine 5 receptor agonist SKF 81297 to determine if activation of skeletal muscle dopamine 1 and dopamine 5 receptors will increase cAMP. We dosed wild-type mice, dopamine 1 receptor knockout mice and dopamine 5 receptor knockout mice undergoing casting-induced disuse atrophy with SKF 81297 to determine if activation of the dopamine 1 and dopamine 5 receptors results in hypertrophy of non-atrophying skeletal muscle and preservation of atrophying skeletal muscle mass and force production.</p> <p>Results</p> <p>In tissue bath, isolated mouse TA and MG muscles responded to SKF 81297 treatment with increased cAMP levels. Treating wild-type mice with SKF 81297 reduced casting-induced TA and MG muscle mass loss in addition to increasing the mass of non-atrophying TA and MG muscles. In dopamine 1 receptor knockout mice, extensor digitorum longus (EDL) and soleus muscle mass and force was not preserved during casting with SKF 81297 treatment, in contrast to significant preservation of casted wild-type mouse EDL and soleus mass and EDL force with SKF 81297 treatment. Dosing dopamine 5 receptor knockout mice with SKF 81297 did not significantly preserve EDL and soleus muscle mass and force although wild-type mouse EDL mass and force was significantly preserved SKF 81297 treatment.</p> <p>Conclusions</p> <p>These data demonstrate for the first time that treatment with a dopamine 1/5 receptor agonist results in (1) significant preservation of EDL, TA, MG and soleus muscle mass and EDL muscle force production during periods of atrophy and (2) hypertrophy of TA and MG muscle. These effects appear to be mainly mediated by both the dopamine 1 and dopamine 5 receptors.</p

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    A History of Clinical Transplantation

    Get PDF

    Complement-Fixing Platelet Iso-Antibodies

    No full text

    Complement-Fixing Platelet Iso-Antibodies

    No full text
    corecore