12 research outputs found

    Reactivity difference between protolytic forms of some macrocyclic chromium(III) complexes in ligand substitution and electron transfer processes

    Get PDF
    The review provides insight into the mechanism of ligand substitution and electron transfer (from chromium( III) to iron(III)) by comparison of the reactivity of some tetraazamacrocyclic chromium(III) complexes in the conjugate acid-base forms. Use of two geometrical isomers made possible to estimate the influence of geometry and protolytic reactions in trans and cis position towards the leaving group on the rate enhancement. Studies on the reaction rates in different media demonstrated the role played by outer sphere interactions in a monodentate ligand substitution

    Kinetics of the methylene blue oxidation by cerium(iv) in sulphuric acid solutions

    No full text
    The oxidation of methylene blue (MB+) by cerium(IV) was studied in 0.1-5 M H2SO4. The reaction proceeds via MB radical (MB2+•) formed by one electron transfer to the oxidant. The radical is observed spectrophotometrically by a very intense absorbance at λmax = 526 nm and by the e.p.r signal at g = 2.000. The kinetics of the fast radical formation are two orders of magnitude slower than its decomposition, which were examined using a stopped-flow method at 298 K under pseudo-first order conditions. The rate laws for the both steps were determined and a likely mechanism reported

    Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media

    No full text
    The kinetics of a fast leuco-Methylene Blue (LMB) re-oxidation to Methylene Blue (MB) by copper(II)-halide (Cl-, Br-) complexes in acidic aqueous media has been studied spectrophotometrically using a stopped-flow technique. The reaction follows a simple first order rate expression under an excess of the copper(II) species (and H+(aq)), and the pseudo-first order rate constant (k'(obs)) is largely independent of the atmosphere used (air, oxygen, argon). The rate law, at constant Cl- (Br-) anion concentration, is given by the expression: (d[MB+])/dt = ((k(a)K[H+] + k(b))/(1 + K[H+])).[Cu-II][LMB] = k'(obs)[LMB], where K is the protonation constant, and k(a) and k(b) are the pseudo-second order rate constants for protonated and deprotonated forms of LMB, respectively The rate law was determined based on the observed k'(obs) vs. [Cu-II] and [H+] dependences. The rate dramatically increases with [Cl-] over the range: 0.1-1.5 M, reflecting the following reactivity order: Cu2+(aq) << CuCl+(aq) <...< CuCl42-. The slow re-oxidation of LMB by oxygen has also been briefly examined at different [H+]. ESR results provide clear evidence for the formation of an intermediate radical. The mechanistic consequences of all these results are discussed

    Kinetics and mechanism of a macrocyclic chromium(III) complex oxidation to chromium(IV) by hexacyanoferrate(III) in strongly alkaline media

    No full text
    Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)(2)](+), where cycb = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate( III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates. Kinetics of oxidation of the macrocyclic Cr(III) complex in alkaline solution has been studied under excess of the reductant. Rate determining formation of Cr(IV) by a second order process involving the Cr(III) and the Fe(III) reactants is seen. This reaction also involves a characteristic higher order than linear dependence on the hydroxide concentration. Reaction mechanisms for the processes, including oxidation of the coordinated macrocyclic ligand under excess of the oxidant- are proposed
    corecore