3,771 research outputs found

    On the Excess Dispersion in the Polarization Position Angle of Pulsar Radio Emission

    Full text link
    The polarization position angles (PA) of pulsar radio emission occupy a distribution that can be much wider than what is expected from the average linear polarization and the off-pulse instrumental noise. Contrary to our limited understanding of the emission mechanism, the excess dispersion in PA implies that pulsar PAs vary in a random fashion. An eigenvalue analysis of the measured Stokes parameters is developed to determine the origin of the excess PA dispersion. The analysis is applied to sensitive, well-calibrated polarization observations of PSR B1929+10 and PSR B2020+28. The analysis clarifies the origin of polarization fluctuations in the emission and reveals that the excess PA dispersion is caused by the isotropic inflation of the data point cluster formed by the measured Stokes parameters. The inflation of the cluster is not consistent with random fluctuations in PA, as might be expected from random changes in the orientation of the magnetic field lines in the emission region or from stochastic Faraday rotation in either the pulsar magnetosphere or the interstellar medium. The inflation of the cluster, and thus the excess PA dispersion, is attributed to randomly polarized radiation in the received pulsar signal. The analysis also indicates that orthogonal polarization modes (OPM) occur where the radio emission is heavily modulated. In fact, OPM may only occur where the modulation index exceeds a critical value of about 0.3.Comment: Accepted for publication in Ap

    Optical materials based on molecular nano/microcrystals and ultrathin films

    Get PDF
    Methodologies that we developed recently for the fabrication of molecular crystals with size variation in the nano to micro regime and polyelectrolyte templated mono and multilayer Langmuir-Blodgett films, are reviewed. The electronic absorption and strong fluorescence in the molecular nano/microcrystals are found to be size-dependent. Crystal structure and computational investigations provide a unified model to explain these observations. Role of polyelectrolyte templating in achieving stable and enhanced optical second harmonic generation response from LB films based on a hemicyanine amphiphile is highlighted

    On the Origin of the Wide HI Absorption Line Toward Sgr A*

    Full text link
    We have imaged a region of about 5' extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within about 2' (approx. 5 pc at 8.5 kpc) of Sgr A* detects a wide line underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 +/- 0.12 centered at a mean velocity of V(lsr) = -4 +/- 15 km/s. The mean full width at half maximum is 119 +/- 42 km/s. Such a wide line is absent in the spectra at positions beyond about 2' from Sgr A*. The position-velocity diagrams in optical depth reveal that the wide line originates in various components of the circumnuclear disk (radius approx. 1.3') surrounding Sgr A*. These components contribute to the optical depth of the wide line in different velocity ranges. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.Comment: LaTeX, 12 pages and 9 figures, accepted for publication in J. Astrophys. Ast

    Modeling and control of a real time shell and tube heat exchanger

    Get PDF
    Process industries generate large amount of heat that needs to be transferred. Shell and tube heat exchangers are extensively used in industries for utilization of the heat energy generated from different processes. For definite utilization of this energy, the temperatures of the hot and cold fluids passing through the heat exchanger should be monitored and controlled efficiently. A proper model of heat exchanger is required for the purpose of monitoring and control. The objective of the paper is to mathematically model the heat exchanger using system identification methods and experimentally evaluate the effectiveness of two PID controller tuning methods such as Internal Model Control (IMC) and relay auto-tuning for temperature control. The Auto Regressive-Moving-Average model with eXogenous inputs (ARMAX) model of the heat exchanger is obtained from the Pseudo Random Binary Signal (PRBS) experiment performed on the heat exchanger system. The outlet temperature of the cold fluid is considered as the controlled variable. Based on the obtained model, PID settings are designed using the two tuning methods, and the closed loop responses such as servo and regulatory are compared experimentally. It is seen from the experimental results that the IMC based controller shows better results than the relay auto tuning method in terms of time integral error (i.e., ISE and ITAE)

    The Sasa-Satsuma higher order nonlinear Schrodinger equation and its bilinearization and multi-soliton solutions

    Full text link
    Higher order and multicomponent generalizations of the nonlinear Schrodinger equation are important in various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particularly interesting soliton solutions. Unfortunately the construction of multi-soliton solutions to this equation presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the three-component Kadomtsev-Petvishvili hierarchy. In the process we also get bilinearizations and multi-soliton formulae for a two component generalization of the Sasa-Satsuma equation (the Yajima-Oikawa-Tasgal-Potasek model), and for a (2+1)-dimensional generalization.Comment: 13 pages in RevTex, added reference

    Sickle cell trait and gross hematuria

    Get PDF

    Optimization of Partial Search

    Full text link
    Quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster, this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by number of queries to the oracle. The author suggests new version of Grover-Radhakrishnan algorithm which uses minimal number of queries to the oracle. The algorithm can run on the same hardware which is used for the usual Grover algorithm.Comment: 5 page

    Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    Get PDF
    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to "favorably curved" field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. The estimated theoretical high-energy luminosities of the SG cascade radiation are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller inclination angles and a larger emission beam, both necessary to produce widely-spaced double-peaked profiles.Comment: 24 pages, accepted for publication in Astrophysical Journal, Version 2 has corrected expressions for high-B cas

    Transport of flexible chiral objects in a uniform shear flow

    Get PDF
    The transport of slightly deformable chiral objects in a uniform shear flow is investigated. Depending on the equilibrium configuration one finds up to four different asymptotic states that can be distinguished by a lateral drift velocity of their center of mass, a rotational motion about the center of mass and deformations of the object. These deformations influence the magnitudes of the principal axes of the second moment tensor of the considered object and also modify a scalar index characterizing its chirality. Moreover, the deformations induced by the shear flow are essential for the phenomenon of dynamical symmetry breaking: Objects that are achiral under equilibrium conditions may dynamically acquire chirality and consequently experience a drift in the lateral direction.Comment: 25 pages, 16 figure

    Ethyl 2-acetoxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate

    Get PDF
    In the title compound, C20H19NO6S, the phenyl ring of the phenyl­sulfonyl group makes a dihedral angle of 83.35 (5)° with the indole ring system. The mol­ecular structure exhibits a number of short intramolecular C—H⋯O contacts
    corecore