66,204 research outputs found
Viscel: A general purpose computer program for analysis of linear viscoelastic structures, volume 2
The VISCEL program is a general purpose computer program developed for equilibrium analysis of linear viscoelastic structures. The program is written in FORTRAN 5 language to operate on the Univac 1108 computer under the EXEC 8 operating system. The program, an extension of the linear equilibrium problem solver ELAS, is an updated and extended version of its earlier form written for the IBM 7094 computer. Finite element matrix displacement approach coupled with the synchronized material property concept, utilizing incremental time steps, was adopted for the solution presented. The step-by-step procedure involves solution of recursive equations in the time domain, which takes into account the memory of material properties. Incremental and accumulative displacements and stresses are obtained at the end of each time step. In order to minimize the extent of computations resulting from accumulative effects of material memory, the program provides an option which enables the employment of constant time steps in the logarithmic scale. Program documentation is presented
A priori error estimates for the optimal control of laser surface hardening of steel
A priori error estimates for the optimal control of laser surface hardening of stee
Origin of the unusual dependence of Raman D band on excitation wavelength in graphite-like materials
We have revisited the still unresolved puzzle of the dispersion of the Raman
disordered-induced D band as a function of laser excitation photon energy E
in graphite-like materials. We propose that the D-mode is a combination of an
optic phonon at the K-point in the Brillioun zone and an acoustic phonon whose
momentum is determined uniquely by the double resonance condition. The fit of
the experimental data with the double-resonance model yields the reduced
effective mass of 0.025m for the electron-hole pairs corresponding to the
A transition, in agreement with other experiments. The model can also
explain the difference between and for D and
D modes, and predicts its dependence on the Raman excitation
frequency.Comment: 4 figures in eps forma
Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy S + Mg Ni reaction
The dynamical cluster-decay model (DCM) is developed further for the decay of
hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The
model is worked out in terms of only one parameter, namely the neck-length
parameter, which is related to the total kinetic energy TKE(T) or effective
Q-value at temperature T of the hot CN, defined in terms of the
both the light-particles (LP), with 4, Z 2, as well as the
complex intermediate mass fragments (IMF), with , is
considered as the dynamical collective mass motion of preformed clusters
through the barrier. Within the same dynamical model treatment, the LPs are
shown to have different characteristics as compared to the IMFs. The systematic
variation of the LP emission cross section , and IMF emission
cross section , calculated on the present DCM match exactly the
statistical fission model predictions. It is for the first time that a
non-statistical dynamical description is developed for the emission of
light-particles from the hot and rotating CN. The model is applied to the decay
of Ni formed in the S + Mg reaction at two incident
energies E = 51.6 and 60.5 MeV. Both the IMFs and average
spectra are found to compare reasonably nicely with the experimental data,
favoring asymmetric mass distributions. The LPs emission cross section is shown
to depend strongly on the type of emitted particles and their multiplicities
- …