15,956 research outputs found
Absence of a true long-range orbital order in a two-leg Kondo ladder
We investigate, through the density-matrix renormalization group and the
Lanczos technique, the possibility of a two-leg Kondo ladder present an
incommensurate orbital order. Our results indicate a staggered short-range
orbital order at half-filling. Away from half-filling our data are consistent
with an incommensurate quasi-long-range orbital order. We also observed that an
interaction between the localized spins enhances the rung-rung current
correlations.Comment: 7 pages, 6 figures, changed the introduction and added some
discussion
A numerical finite size scaling approach to many-body localization
We develop a numerical technique to study Anderson localization in
interacting electronic systems. The ground state of the disordered system is
calculated with quantum Monte-Carlo simulations while the localization
properties are extracted from the ``Thouless conductance'' , i.e. the
curvature of the energy with respect to an Aharonov-Bohm flux. We apply our
method to polarized electrons in a two dimensional system of size . We
recover the well known universal one
parameter scaling function without interaction. Upon switching on the
interaction, we find that is unchanged while the system flows toward
the insulating limit. We conclude that polarized electrons in two dimensions
stay in an insulating state in the presence of weak to moderate
electron-electron correlations.Comment: 5 pages, 4 figure
Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests
Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1–V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide
- …