1,005 research outputs found

    The extinction by dust in the outer parts of spiral galaxies

    Get PDF
    To investigate the distribution of dust in Sb and Sc galaxies we have analyzed near-infrared and optical surface photometry for an unbiased sample of 37 galaxies. Since light in the KK-band is very little affected by extinction by dust, the B−KB-K colour is a good indicator of the amount of extinction, and using the colour-inclination relation we can statistically determine the extinction for an average Sb/Sc galaxy. We find in general a considerable amount of extinction in spiral galaxies in the central regions, all the way out to their effective radii. In the outer parts, at DK,21_{K,21}, or at 3 times the typical exponential scale lengths of the stellar distribution , we find a maximum optical depth of 0.5 in BB for a face-on galaxy. If we impose the condition that the dust is distributed in the same way as the stars, this upper limit would go down to 0.1.Comment: 4 pages, postscript, gzip-compressed, uuencoded, includes 2 figures. Accepted for publication in Astronomy & Astrophysics, Letter

    Target and (Astro-)WISE technologies - Data federations and its applications

    Full text link
    After its first implementation in 2003 the Astro-WISE technology has been rolled out in several European countries and is used for the production of the KiDS survey data. In the multi-disciplinary Target initiative this technology, nicknamed WISE technology, has been further applied to a large number of projects. Here, we highlight the data handling of other astronomical applications, such as VLT-MUSE and LOFAR, together with some non-astronomical applications such as the medical projects Lifelines and GLIMPS, the MONK handwritten text recognition system, and business applications, by amongst others, the Target Holding. We describe some of the most important lessons learned and describe the application of the data-centric WISE type of approach to the Science Ground Segment of the Euclid satellite.Comment: 9 pages, 5 figures, Proceedngs IAU Symposium No 325 Astroinformatics 201

    ISO-SWS spectroscopy of NGC 1068

    Get PDF
    We present ISO-SWS spectroscopy of NGC 1068 for the wavelength range 2.4 to 45um, detecting a total of 36 emission lines. Most of the observed transitions are fine structure and recombination lines originating in the narrow line region. We compare the line profiles of optical lines and reddening-insensitive infrared lines to constrain the dynamical structure and extinction properties of the NLR. The considerable differences found are most likely explained by two effects. (1) The spatial structure of the NLR is a combination of a highly ionized outflow cone and lower excitation extended emission. (2) Parts of the NLR, mainly in the receding part at velocities above systemic, are subject to extinction that is significantly suppressing optical emission. Line asymmetries and net blueshifts remain, however, even for infrared fine structure lines suffering very little obscuration. This may be either due to an intrinsic asymmetry of the NLR, or due to a very high column density obscuring component which is hiding part of the NLR even from infrared view. Mid-infrared emission of molecular hydrogen in NGC 1068 arises in a dense molecular medium at temperatures of a few hundred Kelvin that is most likely closely related to the warm and dense components seen in the near-infrared H2 transitions, and in millimeter wave tracers of molecular gas. Any emission of the putative pc-scale molecular torus is likely overwhelmed by this larger scale emission.Comment: aastex (V4), 9 eps figures. Accepted by Ap

    A Spitzer Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultra-luminous Infrared Galaxies

    Get PDF
    We have conducted a survey of Ultra-luminous Infrared Galaxies (ULIRGs) with the Infrared Spectrograph on the Spitzer Space Telescope, obtaining spectra from 5.0-38.5um for 77 sources with 0.02<z <0.93. Observations of the pure rotational H2 lines S(3) 9.67um, S(2) 12.28um, and S(1) 17.04um are used to derive the temperature and mass of the warm molecular gas. We detect H2 in 77% of the sample, and all ULIRGs with F(60um)>2Jy. The average warm molecular gas mass is ~2x10^8solar-masses. High extinction, inferred from the 9.7um silicate absorption depth, is not observed along the line of site to the molecular gas. The derived H2 mass does not depend on F(25um)/F(60um), which has been used to infer either starburst or AGN dominance. Similarly, the molecular mass does not scale with the 25 or 60um luminosities. In general, the H2 emission is consistent with an origin in photo-dissociation regions associated with star formation. We detect the S(0) 28.22um emission line in a few ULIRGs. Including this line in the model fits tends to lower the temperature by ~50-100K, resulting in a significant increase in the gas mass. The presence of a cooler component cannot be ruled out in the remainder of our sample, for which we do not detect the S(0) line. The measured S(7) 5.51um line fluxes in six ULIRGs implies ~3x10^6 solar-masses of hot (~1400K) H2. The warm gas mass is typically less than 1% of the cold gas mass derived from CO observations.Comment: Accepted ApJ 01 September 2006, v648n1 issue. 14 pages 12 figures IRAS 06361-6217 the f25/f60 ratio is 0.10 not 1.0

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations
    • …
    corecore