221 research outputs found

    The Star Formation History of the Carina Dwarf Galaxy

    Get PDF
    We have analyzed deep B and V photometry of the Carina dwarf spheroidal reaching below the old main-sequence turnoff to about V = 25. Using simulated color-magnitude diagrams to model a range of star formation scenarios, we have extracted a detailed, global star formation history. Carina experienced three significant episodes of star formation at about 15 Gyr, 7 Gyr, and 3 Gyr. Contrary to the generic picture of galaxy evolution, however, the bulk of star formation, at least 50%, occured during the episode 7 Gyr ago, which may have lasted as long as 2 Gyr. For unknown reasons, Carina formed only 10-20% of its stars at an ancient epoch and then remained quiescent for more than 4 Gyr. The remainder (~30%) formed relatively recently, only 3 Gyr ago. Interest in the local population of dwarf galaxies has increased lately due to their potential importance in the understanding of faint galaxy counts. We surmise that objects like Carina, which exhibits the most extreme episodic behavior of any of the dwarf spheroidal companions to the Galaxy, are capable of contributing to the observed excess of blue galaxies at B = 24 only if the star formation occurred instantaneously.Comment: 23 pages of text, 20 figures, 8 tables. AJ, in pres

    The Star Formation History of the Local Group dwarf galaxy Leo I

    Get PDF
    We present a quantitative analysis of the star formation history (SFH) of the Local Group dSph galaxy Leo I, from the information in its HST [(V-I),I] color-magnitude diagram (CMD). The method we use is based in comparing, via synthetic CMDs, the expected distribution of stars in the CMD for different evolutionary scenarios, with the observed distribution. We consider the SFH to be composed by the SFR(t), the Z(t), the IMF, and a function β(f,q)\beta(f,q), controlling the fraction ff and mass ratio distribution qq of binary stars. The comparison between the observed CMD and the model CMDs is done through chi-square minimization of the differences in the number of stars in a set of regions of the CMD. Our solution for the SFH of Leo I defines a minimum of chi-square in a well defined position of the parameter space, and the derived SFR(t) is robust, in the sense that its main characteristics are unchanged for different combinations of the remaining parameters. However, only a narrow range of assumptions for Z(t), IMF and β(f,q)\beta(f,q) result in a good agreement between the data and the models, namely: Z=0.0004, a Kroupa et al. (1993) IMF or slightly steeper, and a relatively large fraction of binary stars. Most star formation activity (70% to 80%) occurred between 7 and 1 Gyr ago. At 1 Gyr ago, it abruptly dropped to a negligible value, but seems to have been active until at least ~ 300 Myr ago. Our results don't unambiguously answer the question of whether Leo I began forming stars around 15 Gyr ago, but it appears that the amount of this star formation, if existing at all, would be small.Comment: 25 pages + 14 figures. Accepted by The Astronomical Journa

    Establishment of a clinical network for children with amelogenesis imperfecta and dentinogenesis imperfecta in the UK: 4-year experience

    Get PDF
    BACKGROUND: Amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are two groups of genetically inherited conditions resulting in abnormal enamel and dentin formation, respectively. Children and young people may be adversely affected by these conditions, with significant reduction in oral health related quality of life. Dental management of children with AI and DI is often complex, which is exacerbated by the absence of clear referral pathways and scarce evidence-based guidelines. METHOD: The need for increased knowledge and peer support led to the development of a group of UK paediatric dentists with a special clinical interest in the management of children with AI and DI. PURPOSE: The aims of this paper are to describe the establishment of an AI/DI Clinical Excellence Network (AI/DI CEN) in paediatric dentistry including outputs and future plans, and to share our collective learning to help support others anywhere in the world advance the care of people with AI or DI

    The Effect of Star Formation History on the Inferred Initial Stellar Mass Function

    Full text link
    Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaux and declines in the present day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with log-normal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.Comment: accepted by ApJ for 1 Jan 2006, Vol 636, 12 pages + 6 figure

    Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy

    Get PDF
    We have discovered 20 dwarf Cepheids (DC) in the Carina dSph galaxy from the analysis of individual CCD images obtained for a deep photometric study of the system. These short-period pulsating variable stars are by far the most distant (~100 kpc) and faintest (V ~ 23.0) DCs known. The Carina DCs obey a well-defined period-luminosity relation, allowing us to readily distinguish between overtone and fundamental pulsators in nearly every case. Unlike RR Lyr stars, the pulsation mode turns out to be uncorrelated with light-curve shape, nor do the overtone pulsators tend towards shorter periods compared to the fundamental pulsators. Using the period-luminosity (PL) relations from Nemec et al. (1994 AJ, 108, 222) and McNamara (1995, AJ, 109, 1751), we derive (m-M)_0 = 20.06 +/- 0.12, for E(B-V) = 0.025 and [Fe/H] = -2.0, in good agreement with recent, independent estimates of the distance/reddening of Carina. The error reflects the uncertainties in the DC distance scale, and in the metallicity and reddening of Carina. The frequency of DCs among upper main sequence stars in Carina is approximately 3%. The ratio of dwarf Cepheids to RR Lyr stars in Carina is 0.13 +/- 0.10, though this result is highly sensitive to the star-formation history of Carina and the evolution of the Horizontal Branch. We discuss how DCs may be useful to search effectively for substructure in the Galactic halo out to Galactocentric distances of ~100 kpc.Comment: 20 pages of text, 7 figure

    Deep HST-WFPC2 photometry of NGC 288. II. The Main Sequence Luminosity Function

    Get PDF
    The Main Sequence Luminosity Function (LF) of the Galactic globular cluster NGC 288 has been obtained using deep WFPC2 photometry. We have employed a new method to correct for completeness and fully account for bin-to-bin migration due to blending and/or observational scatter. The effect of the presence of binary systems in the final LF is quantified and is found to be negligible. There is a strong indication of the mass segregation of unevolved single stars and clear signs of a depletion of low mass stars in NGC 288 with respect to other clusters. The results are in good agreement with the prediction of theoretical models of the dynamical evolution of NGC 288 that take into account the extreme orbital properties of this cluster.Comment: 16 pages, 6 .ps figures. Low resolution version of fig. 1; full resolution figure soon available at http://www.bo.astro.it/bap/BAPhome.html l. Latex. emulateapj5.sty macro included. Accepted for publication by The Astronomical Journa

    BS196: an old star cluster far from the SMC main body

    Get PDF
    We present B and V photometry of the outlying SMC star cluster BS196 with the 4.1-m SOAR telescope. The photometry is deep (to V~25) showing ~3 mag below the cluster turnoff point (TO) at Mv=2.5 (1.03 Msun). The cluster is located at the SMC distance. The CMD and isochrone fittings provide a cluster age of 5.0+-0.5 Gyr, indicating that this is one of the 12 oldest clusters so far detected in the SMC. The estimated metallicity is [Fe/H]=-1.68+-0.10. The structural analysis gives by means of King profile fittings a core radius Rc=8.7+-1.1 arcsec (2.66+-0.14 pc) and a tidal radius Rt=69.4+-1.7 arcsec (21.2+-1.2 pc). BS196 is rather loose with a concentration parameter c=0.90. With Mv=-1.89+-0.39, BS196 belongs to the class of intrinsically fainter SMC clusters, as compared to the well-known populous ones, which starts to be explored.Comment: 8 pages, 10 figures; accepted by MNRA

    The burden of dental care in Amelogenesis Imperfecta paediatric patients in the UK NHS: a retrospective, multi-centred analysis

    Get PDF
    PURPOSE: The burden of dental care in Amelogenesis Imperfecta (AI) has not been well described. This condition results in weak, discoloured and often sensitive teeth. Specialist paediatric care is available for AI patients in the UK, but treatment protocols and care provided are inconsistent. The aim of this study was therefore to analyse the provision of treatment and burden of care for children and families with AI across four Paediatric Dentistry centres in the UK. METHODS: A retrospective evaluation of AI patient clinical records across four UK consultant-led Paediatric Dentistry centres was completed. Frequency and duration of care were recorded along with treatment and experience of inhalation sedation, local and general anaesthetic. RESULTS: In total, 138 records were available for analysis. The average patient age at first referral was 7.7 years (range 1-16 years) and families travelled an average 21.8 miles per appointment (range 0.2-286 miles). Patients attended on average 4.5 appointments per year for 5.8 years. In total, 65.2% had experience of local anaesthetic, 27.5% inhalation sedation and 31.9% general anaesthetic. Dental treatment including restorations and extractions were commonly required on multiple teeth per patient. CONCLUSION: AI carries a high burden of specialist dental care to patients and families. Specialist centres are required to provide longitudinal, comprehensive care

    Hubble Space Telescope Observations of the Oldest Star Clusters in the LMC

    Get PDF
    We present V, V-I color-magnitude diagrams (CMDs) for three old star clusters in the Large Magellanic Cloud (LMC): NGC 1466, NGC 2257 and Hodge 11. Our data extend about 3 magnitudes below the main-sequence turnoff, allowing us to determine accurate relative ages and the blue straggler frequencies. Based on a differential comparison of the CMDs, any age difference between the three LMC clusters is less than 1.5 Gyr. Comparing their CMDs to those of M 92 and M 3, the LMC clusters, unless their published metallicities are significantly in error, are the same age as the old Galactic globulars. The similar ages to Galactic globulars are shown to be consistent with hierarchial clustering models of galaxy formation. The blue straggler frequencies are also similar to those of Galactic globular clusters. We derive a true distance modulus to the LMC of (m-M)=18.46 +/- 0.09 (assuming (m-M)=14.61 for M 92) using these three LMC clusters.Comment: 22 pages; to be published in Ap
    • …
    corecore