1,153 research outputs found
Disconnecting Solar Magnetic Flux
Disconnection of open magnetic flux by reconnection is required to balance
the injection of open flux by CMEs and other eruptive events. Making use of
recent advances in heliospheric background subtraction, we have imaged many
abrupt disconnection events. These events produce dense plasma clouds whose
distinctie shape can now be traced from the corona across the inner solar
system via heliospheric imaging. The morphology of each initial event is
characteristic of magnetic reconnection across a current sheet, and the
newly-disconnected flux takes the form of a "U"-shaped loop that moves outward,
accreting coronal and solar wind material.
We analyzed one such event on 2008 December 18 as it formed and accelerated
at 20 m/s^2 to 320 km/s, expanding self-similarly until it exited our field of
view 1.2 AU from the Sun. From acceleration and photometric mass estimates we
derive the coronal magnetic field strength to be 8uT, 6 Rs above the
photosphere, and the entrained flux to be 1.6x10^11 Wb (1.6x10^19 Mx). We model
the feature's propagation by balancing inferred magnetic tension force against
accretion drag. This model is consistent with the feature's behavior and
accepted solar wind parameters.
By counting events over a 36 day window, we estimate a global event rate of
1/day and a global solar minimum unsigned flux disconnection rate of 6x10^13
Wb/y (6x10^21 Mx/y) by this mechanism. That rate corresponds to ~0.2 nT/y
change in the radial heliospheric field at 1 AU, indicating that the mechanism
is important to the heliospheric flux balance.Comment: preprint is 20 pages with 8 figures; accepted by APJ for publication
in 201
The average magnetic field draping and consistent plasma properties of the Venus magnetotail
A new technique has been developed to determine the average structure of the Venus magnetotail (in the range from −8 Rv to −12 Rv) from the Pioneer Venus magnetometer observations. The spacecraft position with respect to the cross-tail current sheet is determined from an observed relationship between the field-draping angle and the magnitude of the field referenced to its value in the nearby magnetosheath. This allows us statistically to remove the effects of tail flapping and variability of draping for the first time and thus to map the average field configuration in the Venus tail. From this average configuration we calculate the cross-tail current density distribution and J × B forces. Continuity of the tangential electric field is utilized to determine the average variations of the X-directed velocity which is shown to vary from −250 km/s at −8 Rv to −470 km/s at −12 Rv. From the calculated J × B forces, plasma velocity, and MHD momentum equation the approximate plasma acceleration, density, and temperature in the Venus tail are determined. The derived ion density is approximately ∼0.07 p+/cm³ (0.005 O+/cm³) in the lobes and ∼0.9 p+/cm³ (0.06 O+/cm³) in the current sheet, while the derived approximate average plasma temperature for the tail is ∼6×106 K for a hydrogen plasma or ∼9×107 K for an oxygen plasma
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
A possible generation mechanism for the IBEX ribbon from outside the heliosphere
The brightest and most surprising feature in the first all-sky maps of
Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the
Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a
~140{\deg} opening angle, centered at (l,b) = (33{\deg}, 55{\deg}), covering
the part of the celestial sphere with the lowest column densities of the Local
Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results
based on the idea of ENA produced by charge-exchange between the neutral H
atoms at the nearby edge of the LIC and the hot protons of the Local Bubble
(LB). These ENAs can reach the Sun's vicinity because of very low column
density of the intervening LIC material. We show that a plane-parallel or
slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2
cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K),
together with indirect contribution coming from multiply-scattered ENAs from
the LB, may be able to explain both the shape of the ribbon and the observed
intensities provided that the edge is < (500-2000) AU away, the LIC proton
density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of
non-thermal protons over the IBEX energy range. If this model is correct, then
IBEX, for the first time, has imaged in ENAs a celestial object from beyond the
confines of the heliosphere and can directly diagnose the plasma conditions in
the LB.Comment: Accepted by Ap.J.Lett
Assessment of detectability of neutral interstellar deuterium by IBEX observations
The abundance of deuterium in the interstellar gas in front of the Sun gives
insight into the processes of filtration of neutral interstellar species
through the heliospheric interface and potentially into the chemical evolution
of the Galactic gas. We investigate the possibility of detection of neutral
interstellar deuterium at 1 AU from the Sun by direct sampling by the
Interstellar Boundary Explorer (IBEX). We simulate the flux of neutral
interstellar D at IBEX for the actual measurement conditions. We assess the
number of interstellar D atom counts expected during the first three years of
IBEX operation. We also simulate observations expected during an epoch of high
solar activity. In addition, we calculate the expected counts of D atoms from
the thin terrestrial water layer, sputtered from the IBEX-Lo conversion surface
by neutral interstellar He atoms. Most D counts registered by IBEX-Lo are
expected to originate from the water layer, exceeding the interstellar signal
by 2 orders of magnitude. However, the sputtering should stop once the Earth
leaves the portion of orbit traversed by interstellar He atoms. We identify
seasons during the year when mostly the genuine interstellar D atoms are
expected in the signal. During the first 3 years of IBEX operations about 2
detectable interstellar D atoms are expected. This number is comparable with
the expected number of sputtered D atoms registered during the same time
intervals. The most favorable conditions for the detection occur during low
solar activity, in an interval including March and April each year. The
detection chances could be improved by extending the instrument duty cycle,
e.g., by making observations in the special deuterium mode of IBEX-Lo.Comment: Accepted for Astronomy & Astrophysic
Distance to the IBEX Ribbon Source Inferred from Parallax
Maps of Energetic Neutral Atom (ENA) fluxes obtained from Interstellar
Boundary Explorer (IBEX) observations revealed a bright structure extending
over the sky, subsequently dubbed the IBEX ribbon. The ribbon had not been
expected from the existing models and theories prior to IBEX, and a number of
mechanisms have since been proposed to explain the observations. In these
mechanisms, the observed ENAs emerge from source plasmas located at different
distances from the Sun. Since each part of the sky is observed by IBEX twice
during the year from opposite sides of the Sun, the apparent position of the
ribbon as observed in the sky is shifted due to parallax. To determine the
ribbon parallax, we found the precise location of the maximum signal of the
ribbon observed in each orbital arc. The obtained apparent positions were
subsequently corrected for the Compton-Getting effect, gravitational
deflection, and radiation pressure. Finally, we selected a part of the ribbon
where its position is similar between the IBEX energy passbands. We compared
the apparent positions obtained from the viewing locations on the opposite
sides of the Sun, and found that they are shifted by a parallax angle of
, which corresponds to a distance of
AU. This finding supports models of the ribbon with the source located just
outside the heliopause.Comment: 26 pages, 10 figures, 1 table, submitted to Ap
Design of multihundredwatt DIPS for robotic space missions
Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established
Disconnecting Solar Magnetic Flux
Disconnection of open magnetic flux by reconnection is required to balance
the injection of open flux by CMEs and other eruptive events. Making use of
recent advances in heliospheric background subtraction, we have imaged many
abrupt disconnection events. These events produce dense plasma clouds whose
distinctie shape can now be traced from the corona across the inner solar
system via heliospheric imaging. The morphology of each initial event is
characteristic of magnetic reconnection across a current sheet, and the
newly-disconnected flux takes the form of a "U"-shaped loop that moves outward,
accreting coronal and solar wind material.
We analyzed one such event on 2008 December 18 as it formed and accelerated
at 20 m/s^2 to 320 km/s, expanding self-similarly until it exited our field of
view 1.2 AU from the Sun. From acceleration and photometric mass estimates we
derive the coronal magnetic field strength to be 8uT, 6 Rs above the
photosphere, and the entrained flux to be 1.6x10^11 Wb (1.6x10^19 Mx). We model
the feature's propagation by balancing inferred magnetic tension force against
accretion drag. This model is consistent with the feature's behavior and
accepted solar wind parameters.
By counting events over a 36 day window, we estimate a global event rate of
1/day and a global solar minimum unsigned flux disconnection rate of 6x10^13
Wb/y (6x10^21 Mx/y) by this mechanism. That rate corresponds to ~0.2 nT/y
change in the radial heliospheric field at 1 AU, indicating that the mechanism
is important to the heliospheric flux balance.Comment: preprint is 20 pages with 8 figures; accepted by APJ for publication
in 201
- …