26,646 research outputs found

    A secure, constraint-aware role-based access control interoperation framework

    Get PDF
    With the growing needs for and the benefits of sharing resources and information among different organizations, an interoperation framework that automatically integrates policies to facilitate such cross-domain sharing in a secure way is becoming increasingly important. To avoid security breaches, such policies must enforce the policy constraints of the individual domains. Such constraints may include temporal constraints that limit the times when the users can access the resources, and separation of duty (SoD) constraints. Existing interoperation solutions do not address such cross-domain temporal access control and SoDs requirements. In this paper, we propose a role-based framework to facilitate secure interoperation among multiple domains by ensuring the enforcement of temporal and SoD constraints of individual domains. To support interoperation, we do not modify the internal policies, as most of the current approaches do. We present experimental results to demonstrate our proposed framework is effective and easily realizable. © 2011 IEEE

    On the genericity of spacetime singularities

    Get PDF
    We consider here the genericity aspects of spacetime singularities that occur in cosmology and in gravitational collapse. The singularity theorems (that predict the occurrence of singularities in general relativity) allow the singularities of gravitational collapse to be either visible to external observers or covered by an event horizon of gravity. It is shown that the visible singularities that develop as final states of spherical collapse are generic. Some consequences of this fact are discussed.Comment: 19 pages, To be published in the Raychaudhuri Volume, eds. Naresh Dadhich, Pankaj Joshi and Probir Ro

    Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    Full text link
    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.Comment: AAC 201

    Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations

    Full text link
    The truncation method is a collective name for techniques that arise from truncating a Laurent series expansion (with leading term) of generic solutions of nonlinear partial differential equations (PDEs). Despite its utility in finding Backlund transformations and other remarkable properties of integrable PDEs, it has not been generally extended to ordinary differential equations (ODEs). Here we give a new general method that provides such an extension and show how to apply it to the classical nonlinear ODEs called the Painleve equations. Our main new idea is to consider mappings that preserve the locations of a natural subset of the movable poles admitted by the equation. In this way we are able to recover all known fundamental Backlund transformations for the equations considered. We are also able to derive Backlund transformations onto other ODEs in the Painleve classification.Comment: To appear in Nonlinearity (22 pages

    Gravitational collapse of an isentropic perfect fluid with a linear equation of state

    Full text link
    We investigate here the gravitational collapse end states for a spherically symmetric perfect fluid with an equation of state p=kρp=k\rho. It is shown that given a regular initial data in terms of the density and pressure profiles at the initial epoch from which the collapse develops, the black hole or naked singularity outcomes depend on the choice of rest of the free functions available, such as the velocities of the collapsing shells, and the dynamical evolutions as allowed by Einstein equations. This clarifies the role that equation of state and initial data play towards determining the final fate of gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit

    Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes

    Full text link
    Fluctuations of the optical power incident on a photodiode can be converted into phase fluctuations of the resulting electronic signal due to nonlinear saturation in the semiconductor. This impacts overall timing stability (phase noise) of microwave signals generated from a photodetected optical pulse train. In this paper, we describe and utilize techniques to characterize this conversion of amplitude noise to phase noise for several high-speed (>10 GHz) InGaAs P-I-N photodiodes operated at 900 nm. We focus on the impact of this effect on the photonic generation of low phase noise 10 GHz microwave signals and show that a combination of low laser amplitude noise, appropriate photodiode design, and optimum average photocurrent is required to achieve phase noise at or below -100 dBc/Hz at 1 Hz offset a 10 GHz carrier. In some photodiodes we find specific photocurrents where the power-to-phase conversion factor is observed to go to zero
    • 

    corecore