98,448 research outputs found
Vortex Nucleation Induced Phonon Radiation from a Moving Electron Bubble in Superfluid 4He
We construct an efficient zero-temperature semi-local density functional to
dynamically simulate an electron bubble passing through superfluid 4He under
various pressures and electric fields up to nanosecond timescale. Our simulated
drift velocity can be quantitatively compared to experiments particularly when
pressure approaches zero. We find that the high-speed bubble experiences
remarkable expansion and deformation before vortex nucleation occurs.
Accompanied by vortex-ring shedding, drastic surface vibration is generated
leading to intense phonon radiation into the liquid. The amount of energy
dissipated by these phonons is found to be greater than the amount carried away
solely by the vortex rings. These results may enrich our understanding about
the vortex nucleation induced energy dissipation in this fascinating system.Comment: 7 pages, 5 figure
Triaxiality and shape coexistence in Germanium isotopes
The ground-state deformations of the Ge isotopes are investigated in the
framework of Gogny-Hartree-Fock-Bogoliubov (HFB) and Skyrme Hartree-Fock plus
pairing in the BCS approximation. Five different Skyrme parametrizations are
used to explore the influence of different effective masses and spin-orbit
models. There is generally good agreement for binding energies and deformations
(total quadrupole moment, triaxiality) with experimental data where available
(i.e., in the valley of stability). All calculations agree in predicting a
strong tendency for triaxial shapes in the Ge isotopes with only a few
exceptions due to neutron (sub-)shell closures. The frequent occurrence of
energetically very close shape isomers indicates that the underlying
deformation energy landscape is very soft. The general triaxial softness of the
Ge isotopes is demonstrated in the fully triaxial potential energy surface. The
differences between the forces play an increasing role with increasing neutron
number. This concerns particularly the influence of the spin-orbit model, which
has a visible effect on the trend of binding energies towards the drip line.
Different effective mass plays an important role in predicting the quadrupole
and triaxial deformations. The pairing strength only weakly affects binding
energies and total quadrupole deformations, but considerably influences
triaxiality.Comment: 9 page
Slow-roll inflation with a Gauss-Bonnet correction
We consider slow-roll inflation for a single scalar field with an arbitrary
potential and an arbitrary nonminimal coupling to the Gauss-Bonnet term. By
introducing a combined hierarchy of Hubble and Gauss-Bonnet flow functions, we
analytically derive the power spectra of scalar and tensor perturbations. The
standard consistency relation between the tensor-to-scalar ratio and the
spectral index of tensor perturbations is broken. We apply this formalism to a
specific model with a monomial potential and an inverse monomial Gauss-Bonnet
coupling and constrain it by the 7-year Wilkinson Microwave Anisotropy Probe
data. The Gauss-Bonnet term with a positive (or negative) coupling may lead to
a reduction (or enhancement) of the tensor-to-scalar ratio and hence may revive
the quartic potential ruled out by recent cosmological data.Comment: 7 pages, 2 figures, RevTeX, references added, published versio
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
- …