641 research outputs found
Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(<sub>QPI</sub>) databases.
State-of-the-art measurements of the direction and intensity of Earth's ancient magnetic field have made important contributions to our understanding of the geology and palaeogeography of Precambrian Earth. The PALEOMAGIA and PINT(QPI) databases provide thorough public collections of important palaeomagnetic data of this kind. They comprise more than 4,100 observations in total and have been essential in supporting our international collaborative efforts to understand Earth's magnetic history on a timescale far longer than that of the present Phanerozoic Eon. Here, we provide an overview of the technical structure and applications of both databases, paying particular attention to recent improvements and discoveries
Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
The Earth’s inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies1,2,3,4,5 have presented radically differing estimates of the thermal conductivity of the Earth’s core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime6 and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements7 selected using a new set of reliability criteria8. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval9; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth
Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary
AbstractThe quantity of igneous material comprising the Siberian Traps provides a uniquely excellent opportunity to constrain Earth’s paleomagnetic field intensity at the Permo-Triassic boundary. There remains however, a contradiction about the strength of the magnetic field that is exacerbated by the limited number of measurement data. To clarify the geomagnetic field behavior during this time period, for the first time, a microwave paleointensity study has been carried out on the Permo-Triassic flood basalts in order to complement existing datasets obtained using conventional thermal techniques. Samples, which have been dated at ∼250Ma, of the Permo-Triassic trap basalts from the northern extrusive (Maymecha-Kotuy region) and the southeastern intrusive (areas of the Sytikanskaya and Yubileinaya kimberlite pipes) localities on the Siberian platform are investigated. These units have already demonstrated reliable paleomagnetic directions consistent with the retention of a primary remanence. Furthermore, Scanning Electron Microscope analysis confirms the presence of iron oxides likely of primary origin. Microwave Thellier-type paleointensity experiments (IZZI protocol with partial thermoremanent magnetization checks) are performed on 50 samples from 11 sites, of which, 28 samples from 7 sites provide satisfactory paleointensity data. The samples display corresponding distinct directional components, positive pTRM checks and little or no zig-zagging of the Arai or Zijderveld plot, providing evidence to support that the samples are not influenced by lab-induced alteration or multi-domain behavior. The accepted microwave paleointensity results from this study are combined with thermal Thellier-type results from previously published studies to obtain overall estimates for different regions of the Siberian Traps. The mean geomagnetic field intensity obtained from the samples of the northern part is 13.4±12.7μT (Maymecha-Kotuy region), whereas from the southeastern part is 17.3±16.5μT (Sytikanskaya kimberlite pipe) and 48.5±7.3μT (Yubileinaya kimberlite pipe), suggesting that the regional discrepancy is probably due to the insufficient sampling of geomagnetic secular variation, and thus, multiple localities need to be considered to obtain an accurate paleomagnetic dipole moment for this time period. It demonstrates that the overall mean paleointensity of the Siberian Traps is 19.5±13.0μT which corresponds to a mean virtual dipole moment of 3.2±1.8×1022Am2. Results indicate that the average magnetic field intensity during Permo-Triassic boundary is significantly lower (by approximately 50%) than the present geomagnetic field intensity, and thus, it implies that the Mesozoic dipole low might extend 50Myr further back in time than previously recognized
Elevated paleomagnetic dispersion at Saint Helena suggests long-lived anomalous behavior in the South Atlantic.
Earth's magnetic field is presently characterized by a large and growing anomaly in the South Atlantic Ocean. The question of whether this region of Earth's surface is preferentially subject to enhanced geomagnetic variability on geological timescales has major implications for core dynamics, core-mantle interaction, and the possibility of an imminent magnetic polarity reversal. Here we present paleomagnetic data from Saint Helena, a volcanic island ideally suited for testing the hypothesis that geomagnetic field behavior is anomalous in the South Atlantic on timescales of millions of years. Our results, supported by positive baked contact and reversal tests, produce a mean direction approximating that expected from a geocentric axial dipole for the interval 8 to 11 million years ago, but with very large associated directional dispersion. These findings indicate that, on geological timescales, geomagnetic secular variation is persistently enhanced in the vicinity of Saint Helena. This, in turn, supports the South Atlantic as a locus of unusual geomagnetic behavior arising from core-mantle interaction, while also appearing to reduce the likelihood that the present-day regional anomaly is a precursor to a global polarity reversal
The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding
Abstract Background In Drosophila embryos, many biochemically and functionally unrelated transcription factors bind quantitatively to highly overlapping sets of genomic regions, with much of the lowest levels of binding being incidental, non-functional interactions on DNA. The primary biochemical mechanisms that drive these genome-wide occupancy patterns have yet to be established. Results Here we use data resulting from the DNaseI digestion of isolated embryo nuclei to provide a biophysical measure of the degree to which proteins can access different regions of the genome. We show that the in vivo binding patterns of 21 developmental regulators are quantitatively correlated with DNA accessibility in chromatin. Furthermore, we find that levels of factor occupancy in vivo correlate much more with the degree of chromatin accessibility than with occupancy predicted from in vitro affinity measurements using purified protein and naked DNA. Within accessible regions, however, the intrinsic affinity of the factor for DNA does play a role in determining net occupancy, with even weak affinity recognition sites contributing. Finally, we show that programmed changes in chromatin accessibility between different developmental stages correlate with quantitative alterations in factor binding. Conclusions Based on these and other results, we propose a general mechanism to explain the widespread, overlapping DNA binding by animal transcription factors. In this view, transcription factors are expressed at sufficiently high concentrations in cells such that they can occupy their recognition sequences in highly accessible chromatin without the aid of physical cooperative interactions with other proteins, leading to highly overlapping, graded binding of unrelated factors
Deciphering the folding kinetics of transmembrane helical proteins
Nearly a quarter of genomic sequences and almost half of all receptors that
are likely to be targets for drug design are integral membrane proteins.
Understanding the detailed mechanisms of the folding of membrane proteins is a
largely unsolved, key problem in structural biology. Here, we introduce a
general model and use computer simulations to study the equilibrium properties
and the folding kinetics of a -based two helix bundle fragment
(comprised of 66 amino-acids) of Bacteriorhodopsin. Various intermediates are
identified and their free energy are calculated toghether with the free energy
barrier between them. In 40% of folding trajectories, the folding rate is
considerably increased by the presence of non-obligatory intermediates acting
as traps. In all cases, a substantial portion of the helices is rapidly formed.
This initial stage is followed by a long period of consolidation of the helices
accompanied by their correct packing within the membrane. Our results provide
the framework for understanding the variety of folding pathways of helical
transmembrane proteins
Paleoproterozoic Geomagnetic Field Strength From the Avanavero Mafic Sills, Amazonian Craton, Brazil
A recent hypothesis has suggested that Earth's inner core nucleated during the Mesoproterozoic, as evidenced by a rapid increase in the paleointensity (ancient geomagnetic field intensity) record; however, paleointensity data during the Paleoproterozoic and Mesoproterozoic period are limited. To address this problem, we have determined paleointensity from samples from three Paleoproterozoic Avanavero mafic sills (Amazonian Craton, Brazil): Cotingo, 1782 Ma, Puiuà 1788, and Pedra Preta, 1795 Ma. We adopted a multi-protocol approach for paleointensity estimates combining Thellier-type IZZI and LTD-IZZI methods, and the non-heating Preisach protocol. We obtained an average VDM value of 1.3 ± 0.7 × 1022Am2 (Cotingo) of 2.0 ± 0.4 × 1022Am2 (Puiuà) and 6 ± 4 × 1022Am2 (Pedra Preta); it is argued that the Cotingo estimate is the most robust. Our results are the first data from the upper Paleoproterozoic for South America and are comparable to data available from other regions and similar periods. The new data do not invalidate the hypothesis of that Earth's inner core nucleated during the Mesoproterozoic
- …