8 research outputs found

    Deep clinical and biological phenotyping of the preterm birth and small for gestational age syndromes: The INTERBIO-21 st Newborn Case-Control Study protocol.

    Get PDF
    Background: INTERBIO-21 st is Phase II of the INTERGROWTH-21 st Project, the population-based, research initiative involving nearly 70,000 mothers and babies worldwide coordinated by Oxford University and performed by a multidisciplinary network of more than 400 healthcare professionals and scientists from 35 institutions in 21 countries worldwide. Phase I, conducted 2008-2015, consisted of nine complementary studies designed to describe optimal human growth and neurodevelopment, based conceptually on the WHO prescriptive approach. The studies generated a set of international standards for monitoring growth and neurodevelopment, which complement the existing WHO Child Growth Standards. Phase II aims to improve the functional classification of the highly heterogenous preterm birth and fetal growth restriction syndromes through a better understanding of how environmental exposures, clinical conditions and nutrition influence patterns of human growth from conception to childhood, as well as specific neurodevelopmental domains and associated behaviors at 2 years of age. Methods: In the INTERBIO-21 st Newborn Case-Control Study, a major component of Phase II, our objective is to investigate the mechanisms potentially responsible for preterm birth and small for gestational age and their interactions, using deep phenotyping of clinical, growth and epidemiological data and associated nutritional, biochemical, omic and histological profiles. Here we describe the study sites, population characteristics, study design, methodology and standardization procedures for the collection of longitudinal clinical data and biological samples (maternal blood, umbilical cord blood, placental tissue, maternal feces and infant buccal swabs) for the study that was conducted between 2012 and 2018 in Brazil, Kenya, Pakistan, South Africa, Thailand and the UK. Discussion: Our study provides a unique resource for the planned analyses given the range of potentially disadvantageous exposures (including poor nutrition, pregnancy complications and infections) in geographically diverse populations worldwide. The study should enhance current medical knowledge and provide new insights into environmental influences on human growth and neurodevelopment

    Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in Tanzania

    No full text
    Abstract Background Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. Objective To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. Materials and methods A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. Results Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. Conclusion Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania
    corecore