15 research outputs found

    ggstThe role of tendon microcirculation in Achilles and patellar tendinopathy

    Get PDF
    Tendinopathy is of distinct interest as it describes a painful tendon disease with local tenderness, swelling and pain associated with sonographic features such as hypoechogenic texture and diameter enlargement. Recent research elucidated microcirculatory changes in tendinopathy using laser Doppler flowmetry and spectrophotometry such as at the Achilles tendon, the patellar tendon as well as at the elbow and the wrist level. Tendon capillary blood flow is increased at the point of pain. Tendon oxygen saturation as well as tendon postcapillary venous filling pressures, determined non-invasively using combined Laser Doppler flowmetry and spectrophotometry, can quantify, in real-time, how tendon microcirculation changes over with pathology or in response to a given therapy. Tendon oxygen saturation can be increased by repetitive, intermittent short-term ice applications in Achilles tendons; this corresponds to 'ischemic preconditioning', a method used to train tissue to sustain ischemic damage. On the other hand, decreasing tendon oxygenation may reflect local acidosis and deteriorating tendon metabolism. Painful eccentric training, a common therapy for Achilles, patellar, supraspinatus and wrist tendinopathy decreases abnormal capillary tendon flow without compromising local tendon oxygenation. Combining an Achilles pneumatic wrap with eccentric training changes tendon microcirculation in a different way than does eccentric training alone; both approaches reduce pain in Achilles tendinopathy. The microcirculatory effects of measures such as extracorporeal shock wave therapy as well as topical nitroglycerine application are to be studied in tendinopathy as well as the critical question of dosage and maintenance. Interestingly it seems that injection therapy using color Doppler for targeting the area of neovascularisation yields to good clinical results with polidocanol sclerosing therapy, but also with a combination of epinephrine and lidocaine

    ESWT for tendinopathy:technology and clinical implications

    Get PDF
    <p>The general consensus that tendinopathy, at least in the chronic stage, is mainly a degenerative condition and inflammation plays a minor role has led to a shift from treatments that target inflammation towards treatment options that promote regeneration. One of these treatments is extracorporeal shockwave therapy (ESWT), a physical therapy modality that uses pressure waves to treat tendinopathy. This review was undertaken to give an overview of the literature concerning this treatment, and special attention is given to the differences between focused and radial ESWT.</p><p>A narrative description of wave characteristics, generation methods and in vitro effects of ESWT is given. The literature on ESWT as a treatment for one common tendinopathy, patellar tendinopathy, was systematically reviewed.</p><p>Waves that are generated for focused and radial ESWT have very different physical characteristics. It is unclear how these characteristics are related to clinical effectiveness. Studies into the biological effects of ESWT have mainly used focused shockwave therapy, showing a number of effects of shockwaves on biological tissue. The systematic review of studies into the clinical effects of ESWT for patellar tendinopathy showed conflicting evidence for its effectiveness.</p><p>Physical characteristics of focused and radial waves differ substantially, but effect on clinical effectiveness is unclear. Whereas in vitro studies often show the effects of ESWT on tendon tissue, results of clinical studies are inconsistent. Based on the review of the literature, suggestions are given for the use of ESWT in clinical practice regarding timing and treatment parameters.</p><p>IV.</p>
    corecore