13 research outputs found

    Geo-additive modelling of malaria in Burundi

    Get PDF
    Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified, without being able to explain them. Conclusions In this paper, semiparametric models are used to model the effects of both climatic covariates and spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature of the previous month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited access to drinking water, land use (rice paddies for example), displacement of the population (due to armed conflicts).</p

    A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty.</p> <p>Methods</p> <p>MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework.</p> <p>Results</p> <p>Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN.</p> <p>Conclusion</p> <p>The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.</p

    A Bayesian analysis of relative cancer survival with geoadditive models

    Full text link
    In this paper, we develop a so-called relative survival analysis that is used to model the excess risk of a certain sub-population relative to the natural mortality risk which is present in the whole population. Such models are typically used in population-based studies that aim at identifying prognostic factors for disease-specific mortality, with data on specific causes of death not being available. This paper combines relative survival with Bayesian geoadditive regression allowing for a flexible semiparametric analysis. Our work has been motivated by continuous-time spatially referenced survival data on breast cancer where causes of death are not known. A detailed analysis of these data is given. The usefulness of the approach is further illustrated by means of a simulated data set
    corecore