565 research outputs found

    The Modular Socket System as Rural Solution in Indonesia

    Get PDF
    INTRODUCTION: The majority of the people in low-income countries, who need assistive technology do not have access to prosthetic devices [1]. Instead of these people having to make a long journey to one of the few prosthetic workshops, solutions like the Modular Socket System (MSS, ÖssurÂź) may be useful, because potentially they could be delivered and manufactured on site, at the location of the person [2]. This could make it suitable for application in a Community Based Rehabilitation (CBR) setting.The aim of this study was to evaluate the technical feasibility of the MSS for implementation in a CBR setting in terms of required tools, skills and required production time. METHODS: The study was performed at the Department of Prosthetics & Orthotics of the Jakarta I Polytechnic School of Health Science (JSPO). Four JSPO students received a three days training in manufacturing of the MSS. Lower limb amputees were recruited to participate in this study from the region of Jakarta (n = 5) and Bali (n = 10). A set of standardized instruments including the two minutes’ walking test (2MWT) and Prosthesis Evaluation Questionnaire (PEQ) were used to measure performance and satisfaction with the prosthesis. Production and maintenance logbooks were filled out by the involved prosthetists to evaluate the technical feasibility of the MSS. RESULTS AND DISCUSSION: Performance (2MWT) and satisfaction (PEQ) scores were comparable to that of similar studies with other lower leg prostheses [3,4]. Both measures did not decrease significantly over time (Figure 1). This suggest that the JSPO students were able to reach sufficient quality.It took the prosthetists 3.5 to 10.5 hours to fit an amputee with a MSS prosthesis. Mean socket production time was 2.0±0.6 hours and mean prosthesis assembly and fitting time was 4.1±2.6 hours. The only non-portable machine needed for the production of the prosthesis was a grinding machine (router). Smaller portable machines used were a cast cutter/jigsaw, IcecastÂź Compact and resin injection tool. If in the future the grinding machine will be replaced by a handheld tool, production of the MSS could be performed on site, making it suitable for use in a rural setting. Figure 1: The results of the 2MWT at the moment of fitting (t0), at 1-3 months post fitting (t1), and at the end evaluation at 4-6 months post fitting (t2). CONCLUSIONS: Patients who normally have to travel long distances to access prosthetic services were only required to make one visit to the health facility in order to receive a prosthesis. From a technical and quality perspective the method seems feasible, although, high costs remain an issue.ACKNOWLEDGEMENTSMaterials and training for the production of all prostheses were sponsored by ÖssurÂź. REFERENCES: 1.Borg J, et al. Assistive Technology for Children with Disabilities: Creating Opportunities for Education, Inclusion and Participation - a discussion paper. 20152.Normann E, et al., Prosthetics and orthotics international. 35(1):76-80, 20113.Boonstra AM, et al. Prosthetics and orthotics international. 17(2):78-82, 19934.Zidarov D, et al. Archives of Physical Medicine and Rehabilitation. 90(4):634-645, 200

    Advancing Genetic Selection and Behavioral Genomics of Working Dogs Through Collaborative Science

    Get PDF
    The ancient partnership between people and dogs is struggling to meet modern day needs, with demand exceeding our capacity to safely breed high-performing and healthy dogs. New statistical genetic approaches and genomic technology have the potential to revolutionize dog breeding, by transitioning from problematic phenotypic selection to methods that can preserve genetic diversity while increasing the proportion of successful dogs. To fully utilize this technology will require ultra large datasets, with hundreds of thousands of dogs. Today, dog breeders struggle to apply even the tools available now, stymied by the need for sophisticated data storage infrastructure and expertise in statistical genetics. Here, we review recent advances in animal breeding, and how a new approach to dog breeding would address the needs of working dog breeders today while also providing them with a path to realizing the next generation of technology. We provide a step-by-step guide for dog breeders to start implementing estimated breeding value selection in their programs now, and we describe how genotyping and DNA sequencing data, as it becomes more widely available, can be integrated into this approach. Finally, we call for data sharing among dog breeding programs as a path to achieving a future that can benefit all dogs, and their human partners too

    Combining Citizen Science and Genomics to Investigate Tick, Pathogen, and Commensal Microbiome at Single-Tick Resolution

    Get PDF
    The prevalence of tickborne diseases worldwide is increasing virtually unchecked due to the lack of effective control strategies. The transmission dynamics of tickborne pathogens are influenced by the tick microbiome, tick co-infection with other pathogens, and environmental features. Understanding this complex system could lead to new strategies for pathogen control, but will require large-scale, high-resolution data. Here, we introduce Project Acari, a citizen science-based project to assay, at single-tick resolution, species, pathogen infection status, microbiome profile, and environmental conditions of tens of thousands of ticks collected from numerous sites across the United States. In the first phase of the project, we collected more than 2,400 ticks wild-caught by citizen scientists and developed high-throughput methods to process and sequence them individually. Applying these methods to 192 Ixodes scapularis ticks collected in a region with a high incidence of Lyme disease, we found that 62% were colonized by Borrelia burgdorferi, the Lyme disease pathogen. In contrast to previous reports, we did not find an association between the microbiome diversity of a tick and its probability of carrying B. burgdorferi. However, we did find undescribed associations between B. burgdorferi carriage and the presence of specific microbial taxa within individual ticks. Our findings underscore the power of coupling citizen science with high-throughput processing to reveal pathogen dynamics. Our approach can be extended for massively parallel screening of individual ticks, offering a powerful tool to elucidate the ecology of tickborne disease and to guide pathogen-control initiatives

    Neurofibromatosis type 2 protein co-localizes with elements of the cytoskeleton

    Get PDF
    The product of the neurofibromatosis type 2 (NF2) tumor suppressor gene is a 595-amino-acid protein bearing resemblance to a family of band-4.1-related proteins. These proteins, including ezrin, radixin, and moesin, probably function as molecular linking proteins, connecting the cytoskeleton to the cell membrane. On the grounds of the homology to the ezrin, radixin, and moesin proteins and on the basis of its predicted secondary structure, the NF2 protein is also thought to act as a cytoskeleton-cell membrane linking protein. Using monoclonal antibodies to amino- and carboxyl-terminal synthetic NF2 peptides we demonstrate the co-localization of the NF2 protein with elements of the cytoskeleton in a COS cell model system and in cultured human cells. Furthermore, the presence of the NF2 protein in tissue sections is shown. The monoclonal antibodies specifically stain smooth muscle cells and the stratum granulosum of the human epidermis. In cultured smooth muscle cells the NF2 protein co-localizes with actin stress fibers. Immunoelectron microscopy demonstrates the presence of the NF2 protein associated with keratohyalin granules and to a lesser extent with intermediate filaments in the human epidermis. We conclude that the NF2 protein is indeed associated with multiple elements of the cytoskeleton.</p

    Neurofibromatosis type 2 protein co-localizes with elements of the cytoskeleton

    Get PDF
    The product of the neurofibromatosis type 2 (NF2) tumor suppressor gene is a 595-amino-acid protein bearing resemblance to a family of band-4.1-related proteins. These proteins, including ezrin, radixin, and moesin, probably function as molecular linking proteins, connecting the cytoskeleton to the cell membrane. On the grounds of the homology to the ezrin, radixin, and moesin proteins and on the basis of its predicted secondary structure, the NF2 protein is also thought to act as a cytoskeleton-cell membrane linking protein. Using monoclonal antibodies to amino- and carboxyl-terminal synthetic NF2 peptides we demonstrate the co-localization of the NF2 protein with elements of the cytoskeleton in a COS cell model system and in cultured human cells. Furthermore, the presence of the NF2 protein in tissue sections is shown. The monoclonal antibodies specifically stain smooth muscle cells and the stratum granulosum of the human epidermis. In cultured smooth muscle cells the NF2 protein co-localizes with actin stress fibers. Immunoelectron microscopy demonstrates the presence of the NF2 protein associated with keratohyalin granules and to a lesser extent with intermediate filaments in the human epidermis. We conclude that the NF2 protein is indeed associated with multiple elements of the cytoskeleton.</p

    Antimetastatic Potential of PAI-1 Specific RNA Aptamers

    Full text link
    The serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) is increased in several cancers, including breast, where it is associated with a poor outcome. Metastatic breast cancer has a dismal prognosis, as evidenced by treatment goals that are no longer curative but are largely palliative in nature. PAI-1 competes with integrins and the urokinase plasminogen activator receptor on the surface of breast cancer cells for binding to vitronectin. This results in the detachment of tumor cells from the extracellular matrix, which is critical to the metastatic process. For this reason, we sought to isolate RNA aptamers that disrupt the interaction between PAI-1 and vitronectin. Through utilization of combinatorial chemistry techniques, aptamers have been selected that bind to PAI-1 with high affinity and specificity. We identified two aptamers, WT-15 and SM-20, that disrupt the interactions between PAI-1 and heparin, as well as PAI-1 and vitronectin, without affecting the antiprotease activity of PAI-1. Furthermore, SM-20 prevented the detachment of breast cancer cells (MDA-MB-231) from vitronectin in the presence of PAI-1, resulting in an increase in cellular adhesion. Therefore, the PAI-1 aptamer SM-20 demonstrates therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78126/1/oli.2008.0177.pd
    • 

    corecore