77 research outputs found

    Spectra generated by a confined softcore Coulomb potential

    Full text link
    Analytic and approximate solutions for the energy eigenvalues generated by a confined softcore Coulomb potentials of the form a/(r+\beta) in d>1 dimensions are constructed. The confinement is effected by linear and harmonic-oscillator potential terms, and also through `hard confinement' by means of an impenetrable spherical box. A byproduct of this work is the construction of polynomial solutions for a number of linear differential equations with polynomial coefficients, along with the necessary and sufficient conditions for the existence of such solutions. Very accurate approximate solutions for the general problem with arbitrary potential parameters are found by use of the asymptotic iteration method.Comment: 17 pages, 2 figure

    Quantum singular oscillator as a model of two-ion trap: an amplification of transition probabilities due to small time variations of the binding potential

    Full text link
    Following the paper by M. Combescure [Ann. Phys. (NY) 204, 113 (1990)], we apply the quantum singular time dependent oscillator model to describe the relative one dimensional motion of two ions in a trap. We argue that the model can be justified for low energy excited states with the quantum numbers nnmax100n\ll n_{max}\sim 100, provided that the dimensionless constant characterizing the strength of the repulsive potential is large enough, g105g_*\sim 10^5. Time dependent Gaussian-like wave packets generalizing odd coherent states of the harmonic oscillator, and excitation number eigenstates are constructed. We show that the relative motion of the ions, in contradistinction to its center of mass counterpart, is extremely sensitive to the time dependence of the binding harmonic potential, since the large value of gg_* results in a significant amplification of the transition probabilities between energy eigenstate even for slow time variations of the frequency.Comment: 19 pages, LaTeX, 5 eps-figures, to appear on Phys. Rev. A, one reference correcte

    On the Liouvillian solutions to the perturbation equations of the Schwarzschild black hole

    No full text
    We use Kovacic's algorithm to obtain all Liouvillian solutions, i.e., essentially all solutions in terms of quadratures, of the master equation which governs the evolution of first order perturbations of the Schwarzschild geometry. We show that all solutions in quadratures of this equation contain a polynomial solution to an associated ordinary differential equation (ODE). This ODE, apart from a few trivial cases, falls into the confluent Heun class. In the case of the gravitational perturbations, for the Liouvillian solution χdr ⁣χ2\chi \int \frac {{\rm d}r_{\!\ast}}{\chi^{2}}, we find in "closed form" the polynomial solution P to the associated confluent Heun ODE. We prove that the Liouvillian solution χdr ⁣χ2\chi \int \frac {{\rm d}r_{\!\ast}}{\chi^{2}} is a product of elementary functions, one of them being the polynomial P. We extend previous results by Hautot and use the extended results we derive in order to prove that P admits a finite expansion in terms of truncated confluent hypergeometric functions of the first kind. We also prove, by using the extended results we derive, that P admits also a finite expansion in terms of associated Laguerre polynomials. We prove, save for two unresolved cases, that the Liouvillian solutions χ\chi and χdr ⁣χ2\chi \int \frac {{\rm d}r_{\!\ast}}{\chi^{2}}, initially found by Chandrasekhar, are the only Liouvillian solutions to the master equation. We improve previous results in the literature on this problem and compare our results with theirs. Comments are made for a more efficient implementation of Kovacic's algorithm to any second order ODE with rational function coefficients. Our results set the stage for deriving similar results in other black hole geometries 4-dim and higher.Comment: 118 page

    La stucture des raies K des éléments légers

    No full text
    Les raies K des éléments très légers ont toujours été observées jusqu'à présent sous l'aspect de raies larges s'étendant sur un ou plusieurs Å sans qu'aucune structure fine de ces raies ait jamais été décelée. Cette particularité est due au manque de dispersion ou au mauvais pouvoir de résolution des appareils employés. Au point de vue de l'étude des structures fines de raies, on a tout intérêt à utiliser un réseau concave au lieu d'un réseau plan et à choisir un réseau de grand rayon de courbure ; par contre, on n'a pas intérêt à utiliser une incidence extrêmement rasante. Au point de vue de l'intensité des raies, on a intérêt à utiliser l'incidence la plus rasante possible (pouvoir réflecteur) et le rayon de courbure le plus grand possible (astigmatisme) Au point de vue de la bonne définition des raies, on doit réduire le réseau à sa largeur optimum. Deux spectrographes dans le vide à réseau concave tangent, très dispersifs, ont été réalisés selon ces principes. Quelques détails techniques relatifs à leur conception et à leur construction sont décrits. Les résultats de l'étude des raies K α du carbone et du bore sont indiqués. La raie K α du carbone est constituée par trois composantes au moins; l'existence d'une structure complexe de la raie K α du bore est également reconnue. L'hypothèse d'un élargissement considérable des niveaux quantiques dans les atomes des éléments très légers, formulée par les chercheurs pour expliquer la largeur des raies, apparaît ainsi comme n'étant pas fondée. Il semble bien que la raie K α du carbone ait une structure semblable à celle des raies K α des éléments lourds
    corecore