5 research outputs found

    Secondary structure of rhBMP-2 in a protective biopolymeric carrier material

    Get PDF
    Efficient delivery of growth factors is one of the great challenges of tissue engineering. Polyelectrolyte multilayer films (PEM) made of biopolymers have recently emerged as an interesting carrier for delivering recombinant human bone morphogenetic protein 2 (rhBMP-2 noted here BMP-2) to cells in a matrix-bound manner. We recently showed that PEM made of poly(l-lysine) and hyaluronan (PLL/HA) can retain high and tunable quantities of BMP-2 and can deliver it to cells to induce their differentiation in osteoblasts. Here, we investigate quantitatively by Fourier transform infrared spectroscopy (FTIR) the secondary structure of BMP-2 in solution as well as trapped in a biopolymeric thin film. We reveal that the major structural elements of BMP-2 in solution are intramolecular β-sheets and unordered structures as well as α-helices. Furthermore, we studied the secondary structure of rhBMP-2 trapped in hydrated films and in dry films since drying is an important step for future applications of these bioactive films onto orthopedic biomaterials. We demonstrate that the structural elements were preserved when BMP-2 was trapped in the biopolymeric film in hydrated conditions and, to a lesser extent, in dry state. Importantly, its bioactivity was maintained after drying of the film. Our results appear highly promising for future applications of these films as coatings of biomedical materials, to deliver bioactive proteins while preserving their bioactivity upon storage in dry state.This work was supported by the French Ministry of Research through an ANR-EmergenceBIO grant (ANR-09-EBIO-012-01), by the European Commission (FP7 program) via a European Research Council starting grant (BIOMIM, GA 259370), and by GRAVIT (081012_FIBIOS). C.P. is grafetul to IUF for financial support

    Association between expression of the Bone morphogenetic proteins 2 and 7 in the repair of circumscribed cartilage lesions with clinical outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there is much known about the role of BMPs in cartilage metabolism reliable data about the <it>in vivo </it>regulation in natural and surgically induced cartilage repair are still missing.</p> <p>Methods</p> <p>Lavage fluids of knee joints of 47 patients were collected during surgical therapy. 5 patients had no cartilage lesion and served as a control group, the other 42 patients with circumscribed cartilage defects were treated by microfracturing (19) or by an Autologous Chondrocyte Implantation (23). The concentrations of BMP-2 and BMP-7 were determined by ELISA. The clinical status was evaluated using the IKDC Score prior to and 1 year following the operation.</p> <p>Results</p> <p>High level expression in the control group was found for BMP-2, concentrations of BMP-7 remained below detection levels. No statistical differences could be detected in concentrations of BMP-2 or BMP-7 in the lavage fluids of knees with cartilage lesions compared to the control group. Levels of BMP-7 did not change after surgical cartilage repair, whereas concentrations of BMP-2 statistically significant increased after the intervention (p < 0.001). The clinical outcome following cartilage regenerating surgery increased after 1 year by 29% (p < 0.001). The difference of the IKDC score after 1 year and prior to the operation was used to quantify the degree of improvement following surgery. This difference statistically significant correlated with initial BMP-2 (R = 0.554, p < 0.001) but not BMP-7 (R = 0.031, n.s.) levels in the knee joints.</p> <p>Conclusions</p> <p>BMP-2 seems to play an important role in surgically induced cartilage repair; synovial expression correlates with the clinical outcome.</p
    corecore