103 research outputs found
How do Wireless Chains Behave? The Impact of MAC Interactions
In a Multi-hop Wireless Networks (MHWN), packets are routed between source
and destination using a chain of intermediate nodes; chains are a fundamental
communication structure in MHWNs whose behavior must be understood to enable
building effective protocols. The behavior of chains is determined by a number
of complex and interdependent processes that arise as the sources of different
chain hops compete to transmit their packets on the shared medium. In this
paper, we show that MAC level interactions play the primary role in determining
the behavior of chains. We evaluate the types of chains that occur based on the
MAC interactions between different links using realistic propagation and packet
forwarding models. We discover that the presence of destructive interactions,
due to different forms of hidden terminals, does not impact the throughput of
an isolated chain significantly. However, due to the increased number of
retransmissions required, the amount of bandwidth consumed is significantly
higher in chains exhibiting destructive interactions, substantially influencing
the overall network performance. These results are validated by testbed
experiments. We finally study how different types of chains interfere with each
other and discover that well behaved chains in terms of self-interference are
more resilient to interference from other chains
OSCAR: A Collaborative Bandwidth Aggregation System
The exponential increase in mobile data demand, coupled with growing user
expectation to be connected in all places at all times, have introduced novel
challenges for researchers to address. Fortunately, the wide spread deployment
of various network technologies and the increased adoption of multi-interface
enabled devices have enabled researchers to develop solutions for those
challenges. Such solutions aim to exploit available interfaces on such devices
in both solitary and collaborative forms. These solutions, however, have faced
a steep deployment barrier.
In this paper, we present OSCAR, a multi-objective, incentive-based,
collaborative, and deployable bandwidth aggregation system. We present the
OSCAR architecture that does not introduce any intermediate hardware nor
require changes to current applications or legacy servers. The OSCAR
architecture is designed to automatically estimate the system's context,
dynamically schedule various connections and/or packets to different
interfaces, be backwards compatible with the current Internet architecture, and
provide the user with incentives for collaboration. We also formulate the OSCAR
scheduler as a multi-objective, multi-modal scheduler that maximizes system
throughput while minimizing energy consumption or financial cost. We evaluate
OSCAR via implementation on Linux, as well as via simulation, and compare our
results to the current optimal achievable throughput, cost, and energy
consumption. Our evaluation shows that, in the throughput maximization mode, we
provide up to 150% enhancement in throughput compared to current operating
systems, without any changes to legacy servers. Moreover, this performance gain
further increases with the availability of connection resume-supporting, or
OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput
Inferring Room Semantics Using Acoustic Monitoring
Having knowledge of the environmental context of the user i.e. the knowledge
of the users' indoor location and the semantics of their environment, can
facilitate the development of many of location-aware applications. In this
paper, we propose an acoustic monitoring technique that infers semantic
knowledge about an indoor space \emph{over time,} using audio recordings from
it. Our technique uses the impulse response of these spaces as well as the
ambient sounds produced in them in order to determine a semantic label for
them. As we process more recordings, we update our \emph{confidence} in the
assigned label. We evaluate our technique on a dataset of single-speaker human
speech recordings obtained in different types of rooms at three university
buildings. In our evaluation, the confidence\emph{ }for the true label
generally outstripped the confidence for all other labels and in some cases
converged to 100\% with less than 30 samples.Comment: 2017 IEEE International Workshop on Machine Learning for Signal
Processing, Sept.\ 25--28, 2017, Tokyo, Japa
Unconventional TV Detection using Mobile Devices
Recent studies show that the TV viewing experience is changing giving the
rise of trends like "multi-screen viewing" and "connected viewers". These
trends describe TV viewers that use mobile devices (e.g. tablets and smart
phones) while watching TV. In this paper, we exploit the context information
available from the ubiquitous mobile devices to detect the presence of TVs and
track the media being viewed. Our approach leverages the array of sensors
available in modern mobile devices, e.g. cameras and microphones, to detect the
location of TV sets, their state (ON or OFF), and the channels they are
currently tuned to. We present the feasibility of the proposed sensing
technique using our implementation on Android phones with different realistic
scenarios. Our results show that in a controlled environment a detection
accuracy of 0.978 F-measure could be achieved.Comment: 4 pages, 14 figure
Detecting And Tracking Attacks in Mobile Edge Computing Platforms
Device-to-device (d2d) communication has emerged as a solution that promises high bit rates, low delay and low energy consumption which represents the key for novel technologies such as Google Glass, S Beam, and LTE-Direct. Such d2d communication has enabled computational offloading among collaborative mobile devices for a multitude of purposes such as reducing the overall energy, ensuring resource balancing across device, reducing the execution time, or simply executing applications whose computing requirements transcend what can be accomplished on a single device. While this novel computation platform has offered convenience and multiple other advantages, it obviously enables new security challenges and mobile network vulnerabilities. We anticipate challenging future security attacks resulting from the adoption of collaborative mobile edge cloud computing platforms, such as MDCs and FemtoClouds. In typical botnet attacks, “vertical communication” between a botmaster and infected bots, enables attacks that originate from outside the network. While intrusion detection systems typically analyze network traffic to detect anomalies, honeypots are used to attract and detect attackers, and firewalls are placed at the network periphery to filter undesired traffic. However, these traditional security measures are not as effective in protecting networks from insider attacks such as MobiBots, a mobile-to-mobile distributed botnet. This shortcoming is due to the mobility of bots and the distributed coordination that takes place in MobiBot attacks. In contrast to classical network attacks, these attacks are difficult to detect because MobiBots adopt “horizontal communication” that leverages frequent contacts amongst entities capable of exchanging data/code. In addition, this architecture does not provide any pre-established command and control channels (C&C) between a botmaster and its bots. Overall, such mobile device infections will circumvent classical security measures, ultimately enabling more sophisticated and dangerous attacks from within the network. We propose HoneyBot, a defense technique that detects, tracks, and isolates malicious device-to-device communication insider attacks. HoneyBots operate in three phases: detection, tracking, and isolation. In the detection phase, the HoneyBot operates in a vulnerable mode in order to detect lower layer and service-based malicious communication. We adopt a data driven approach, using real world indoor mobility traces, to evaluate the impact of the number of HoneyBots deployed and their placement on the detection delay performance. Our results show that utilizing only a few HoneyBot nodes helps detect malicious infection in no more than 15 minutes. Once the HoneyBot detects malicious communication, it initiates the tracking phase which consists of disseminating control messages to help “cure” the infected nodes and trace back the infection paths used by the malicious nodes. We show that HoneyBots are able to accurately track the source(s) of the attack in less than 20 minutes. Once the source(s) of the attack is/are identified, the HoneyBot activates the isolation phase that aims at locating the suspected node. We assume that the suspect node is not a cooperative device that aims at hiding its identity by ignoring all the Honeybot messages. Therefore, the HoneyBot requests wireless fingerprints from all nodes that have encountered this suspect nodes at a given time period. These fingerprints are used to locate these nodes and narrow down the suspect\u27s location. To evaluate our localization accuracy, we first deploy an experimental testbed where we show that HoneyBots accurately localize the suspect node within 4 to 6 m2. HoneyBots can operate efficiently in small numbers, as few as 2 or 3 nodes while improving the detection, tracking, and the isolation by a factor of 2 to 3. We also assess the scalability of HoneyBots using a large scale mobility trace with more than 500 nodes. We consider, in the attached Figure, a scenario of a corporate network consisting of 9 vulnerable devices labeled 1 to 9. Such network is attacked by one or many botmaster nodes using d2d MobiBot communication. We notice that attacks are propagated horizontally, bypassing all Firewall and intrusion detection techniques deployed by the corporate network administrators. In this scenario, we identify 3 main actors; the botmaster (red hexagon), the HoneyBot (green circle), the infected bot (red circle), and the cured or clear node (blue circle). We assume that the 9 nodes shown in the figure only represent the vulnerable d2d nodes in this corporate networks. We propose detection, tracking and isolation technique that aim at accurately and efficiently defend networks from insider d2d malicious communication
Senyapan Dalam Ujaran Isyana Dan Cindercella Pada Video Talkshow “Metal” Di Youtube
Penelitian ini merupakan penelitian terhadap fenomena senyapan dalam produksi ujaran Isyana dan Cindercella dalam talkshow ringan “Metal” di youtube. Metode yang digunakan yaitu metode kualitatif deskriptif dengan tujuan untuk mendeskripsikan temuan dari hasil analisis terhadap fenomena senyapan dalam produksi ujaran Isayana dan Cindercella di dalam video tersebut seperti jenis senyapan, distribusi senyapan, dan penyebab senyapan. Hasilnya ditemukan dua jenis senyapan di dalam video tersebut yaitu senyapan diam dan senyapan terisi yang meliputi senyapan yang terisi dengan bunyi, kata, pengulangan, dan kombinasi pengulangan. Distribusi senyapan semuanya berada di posisi tengah klausa. Ada pun penyebab terjadinya senyapan yaitu: (1) pengambilan napas, (2) pencarian kosakata yang tepat, (3) gugup, (4) lupa pada kosakata tertentu, (5) koreksi dari penutur, (6) keraguan, dan (7) penekanan pada kata tertentu
On realistic target coverage by autonomous drones
Low-cost mini-drones with advanced sensing and maneuverability enable a new class of intelligent sensing systems. To achieve the full potential of such drones, it is necessary to develop new enhanced formulations of both common and emerging sensing scenarios. Namely, several fundamental challenges in visual sensing are yet to be solved including (1) fitting sizable targets in camera frames; (2) positioning cameras at effective viewpoints matching target poses; and (3) accounting for occlusion by elements in the environment, including other targets. In this article, we introduce Argus, an autonomous system that utilizes drones to collect target information incrementally through a two-tier architecture. To tackle the stated challenges, Argus employs a novel geometric model that captures both target shapes and coverage constraints. Recognizing drones as the scarcest resource, Argus aims to minimize the number of drones required to cover a set of targets. We prove this problem is NP-hard, and even hard to approximate, before deriving a best-possible approximation algorithm along with a competitive sampling heuristic which runs up to 100Ă— faster according to large-scale simulations. To test Argus in action, we demonstrate and analyze its performance on a prototype implementation. Finally, we present a number of extensions to accommodate more application requirements and highlight some open problems
- …